Metamath Proof Explorer


Theorem ltadd2d

Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
letrd.3 φC
Assertion ltadd2d φA<BC+A<C+B

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 letrd.3 φC
4 ltadd2 ABCA<BC+A<C+B
5 1 2 3 4 syl3anc φA<BC+A<C+B