Metamath Proof Explorer


Theorem ltexp2rd

Description: The power of a positive number smaller than 1 decreases as its exponent increases. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpcld.1 φA+
rpexpcld.2 φN
ltexp2rd.3 φM
ltexp2rd.4 φA<1
Assertion ltexp2rd φM<NAN<AM

Proof

Step Hyp Ref Expression
1 rpexpcld.1 φA+
2 rpexpcld.2 φN
3 ltexp2rd.3 φM
4 ltexp2rd.4 φA<1
5 ltexp2r A+MNA<1M<NAN<AM
6 1 3 2 4 5 syl31anc φM<NAN<AM