Metamath Proof Explorer


Theorem ltexprlem1

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 3-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C=x|y¬yAy+𝑸xB
Assertion ltexprlem1 B𝑷ABC

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C=x|y¬yAy+𝑸xB
2 pssnel AByyB¬yA
3 prnmadd B𝑷yBxy+𝑸xB
4 3 anim2i ¬yAB𝑷yB¬yAxy+𝑸xB
5 19.42v x¬yAy+𝑸xB¬yAxy+𝑸xB
6 4 5 sylibr ¬yAB𝑷yBx¬yAy+𝑸xB
7 6 exp32 ¬yAB𝑷yBx¬yAy+𝑸xB
8 7 com3l B𝑷yB¬yAx¬yAy+𝑸xB
9 8 impd B𝑷yB¬yAx¬yAy+𝑸xB
10 9 eximdv B𝑷yyB¬yAyx¬yAy+𝑸xB
11 2 10 syl5 B𝑷AByx¬yAy+𝑸xB
12 1 eqabri xCy¬yAy+𝑸xB
13 12 exbii xxCxy¬yAy+𝑸xB
14 n0 CxxC
15 excom yx¬yAy+𝑸xBxy¬yAy+𝑸xB
16 13 14 15 3bitr4i Cyx¬yAy+𝑸xB
17 11 16 imbitrrdi B𝑷ABC