Metamath Proof Explorer


Theorem ltle

Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999)

Ref Expression
Assertion ltle ABA<BAB

Proof

Step Hyp Ref Expression
1 orc A<BA<BA=B
2 leloe ABABA<BA=B
3 1 2 imbitrrid ABA<BAB