Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltle
Next ⟩
leltne
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltle
Description:
'Less than' implies 'less than or equal to'.
(Contributed by
NM
, 25-Aug-1999)
Ref
Expression
Assertion
ltle
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
→
A
≤
B
Proof
Step
Hyp
Ref
Expression
1
orc
⊢
A
<
B
→
A
<
B
∨
A
=
B
2
leloe
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
A
<
B
∨
A
=
B
3
1
2
syl5ibr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
→
A
≤
B