Metamath Proof Explorer


Theorem ltned

Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltned.2 φA<B
Assertion ltned φAB

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltned.2 φA<B
3 1 2 gtned φBA
4 3 necomd φAB