Metamath Proof Explorer


Theorem ltneg

Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by NM, 27-Aug-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltneg ABA<BB<A

Proof

Step Hyp Ref Expression
1 0re 0
2 ltsub2 AB0A<B0B<0A
3 1 2 mp3an3 ABA<B0B<0A
4 df-neg B=0B
5 df-neg A=0A
6 4 5 breq12i B<A0B<0A
7 3 6 bitr4di ABA<BB<A