Metamath Proof Explorer


Theorem ltnegi

Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by NM, 21-Jan-1997)

Ref Expression
Hypotheses lt2.1 A
lt2.2 B
Assertion ltnegi A<BB<A

Proof

Step Hyp Ref Expression
1 lt2.1 A
2 lt2.2 B
3 ltneg ABA<BB<A
4 1 2 3 mp2an A<BB<A