Metamath Proof Explorer


Theorem ltnle

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005)

Ref Expression
Assertion ltnle ABA<B¬BA

Proof

Step Hyp Ref Expression
1 lenlt BABA¬A<B
2 1 ancoms ABBA¬A<B
3 2 con2bid ABA<B¬BA