Metamath Proof Explorer


Theorem ltrnat

Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel uses. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses ltrnel.l ˙=K
ltrnel.a A=AtomsK
ltrnel.h H=LHypK
ltrnel.t T=LTrnKW
Assertion ltrnat KHLWHFTPAFPA

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙=K
2 ltrnel.a A=AtomsK
3 ltrnel.h H=LHypK
4 ltrnel.t T=LTrnKW
5 simp3 KHLWHFTPAPA
6 eqid BaseK=BaseK
7 6 2 atbase PAPBaseK
8 6 2 3 4 ltrnatb KHLWHFTPBaseKPAFPA
9 7 8 syl3an3 KHLWHFTPAPAFPA
10 5 9 mpbid KHLWHFTPAFPA