Metamath Proof Explorer


Theorem ltrnateq

Description: If any atom (under W ) is not equal to its translation, so is any other atom. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses ltrn2eq.l ˙=K
ltrn2eq.a A=AtomsK
ltrn2eq.h H=LHypK
ltrn2eq.t T=LTrnKW
Assertion ltrnateq KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q

Proof

Step Hyp Ref Expression
1 ltrn2eq.l ˙=K
2 ltrn2eq.a A=AtomsK
3 ltrn2eq.h H=LHypK
4 ltrn2eq.t T=LTrnKW
5 1 2 3 4 ltrn2ateq KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q
6 5 biimp3a KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q