Metamath Proof Explorer


Theorem ltsubrpd

Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
Assertion ltsubrpd φ A B < A

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 ltsubrp A B + A B < A
4 1 2 3 syl2anc φ A B < A