Metamath Proof Explorer


Theorem lubcl

Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubcl.b B=BaseK
lubcl.u U=lubK
lubcl.k φKV
lubcl.s φSdomU
Assertion lubcl φUSB

Proof

Step Hyp Ref Expression
1 lubcl.b B=BaseK
2 lubcl.u U=lubK
3 lubcl.k φKV
4 lubcl.s φSdomU
5 eqid K=K
6 biid ySyKxzBySyKzxKzySyKxzBySyKzxKz
7 1 5 2 3 4 lubelss φSB
8 1 5 2 6 3 7 lubval φUS=ιxB|ySyKxzBySyKzxKz
9 1 5 2 6 3 4 lubeu φ∃!xBySyKxzBySyKzxKz
10 riotacl ∃!xBySyKxzBySyKzxKzιxB|ySyKxzBySyKzxKzB
11 9 10 syl φιxB|ySyKxzBySyKzxKzB
12 8 11 eqeltrd φUSB