Metamath Proof Explorer


Theorem lubl

Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b B=BaseK
lublem.l ˙=K
lublem.u U=lubK
Assertion lubl KCLatSBXBySy˙XUS˙X

Proof

Step Hyp Ref Expression
1 lublem.b B=BaseK
2 lublem.l ˙=K
3 lublem.u U=lubK
4 1 2 3 lublem KCLatSBySy˙USzBySy˙zUS˙z
5 4 simprd KCLatSBzBySy˙zUS˙z
6 breq2 z=Xy˙zy˙X
7 6 ralbidv z=XySy˙zySy˙X
8 breq2 z=XUS˙zUS˙X
9 7 8 imbi12d z=XySy˙zUS˙zySy˙XUS˙X
10 9 rspccva zBySy˙zUS˙zXBySy˙XUS˙X
11 5 10 stoic3 KCLatSBXBySy˙XUS˙X