Metamath Proof Explorer


Theorem m11nprm

Description: The eleventh Mersenne number M_11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021)

Ref Expression
Assertion m11nprm 2 11 1 = 89 23

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 0nn0 0 0
3 1 2 deccl 20 0
4 4nn0 4 0
5 3 4 deccl 204 0
6 8nn0 8 0
7 1nn0 1 0
8 2exp11 2 11 = 2048
9 4p1e5 4 + 1 = 5
10 eqid 204 = 204
11 3 4 9 10 decsuc 204 + 1 = 205
12 8m1e7 8 1 = 7
13 5 6 7 8 11 12 decsubi 2 11 1 = 2047
14 3nn0 3 0
15 1 14 deccl 23 0
16 9nn0 9 0
17 eqid 89 = 89
18 7nn0 7 0
19 eqid 23 = 23
20 eqid 20 = 20
21 8t2e16 8 2 = 16
22 2p2e4 2 + 2 = 4
23 21 22 oveq12i 8 2 + 2 + 2 = 16 + 4
24 6nn0 6 0
25 eqid 16 = 16
26 1p1e2 1 + 1 = 2
27 6p4e10 6 + 4 = 10
28 7 24 4 25 26 27 decaddci2 16 + 4 = 20
29 23 28 eqtri 8 2 + 2 + 2 = 20
30 8t3e24 8 3 = 24
31 30 oveq1i 8 3 + 0 = 24 + 0
32 1 4 deccl 24 0
33 32 nn0cni 24
34 33 addid1i 24 + 0 = 24
35 31 34 eqtri 8 3 + 0 = 24
36 1 14 1 2 19 20 6 4 1 29 35 decma2c 8 23 + 20 = 204
37 9t2e18 9 2 = 18
38 8p2e10 8 + 2 = 10
39 7 6 1 37 26 38 decaddci2 9 2 + 2 = 20
40 9t3e27 9 3 = 27
41 16 1 14 19 18 1 39 40 decmul2c 9 23 = 207
42 15 6 16 17 18 3 36 41 decmul1c 89 23 = 2047
43 13 42 eqtr4i 2 11 1 = 89 23