Metamath Proof Explorer


Theorem m11nprm

Description: The eleventh Mersenne number M_11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021)

Ref Expression
Assertion m11nprm
|- ( ( 2 ^ ; 1 1 ) - 1 ) = ( ; 8 9 x. ; 2 3 )

Proof

Step Hyp Ref Expression
1 2nn0
 |-  2 e. NN0
2 0nn0
 |-  0 e. NN0
3 1 2 deccl
 |-  ; 2 0 e. NN0
4 4nn0
 |-  4 e. NN0
5 3 4 deccl
 |-  ; ; 2 0 4 e. NN0
6 8nn0
 |-  8 e. NN0
7 1nn0
 |-  1 e. NN0
8 2exp11
 |-  ( 2 ^ ; 1 1 ) = ; ; ; 2 0 4 8
9 4p1e5
 |-  ( 4 + 1 ) = 5
10 eqid
 |-  ; ; 2 0 4 = ; ; 2 0 4
11 3 4 9 10 decsuc
 |-  ( ; ; 2 0 4 + 1 ) = ; ; 2 0 5
12 8m1e7
 |-  ( 8 - 1 ) = 7
13 5 6 7 8 11 12 decsubi
 |-  ( ( 2 ^ ; 1 1 ) - 1 ) = ; ; ; 2 0 4 7
14 3nn0
 |-  3 e. NN0
15 1 14 deccl
 |-  ; 2 3 e. NN0
16 9nn0
 |-  9 e. NN0
17 eqid
 |-  ; 8 9 = ; 8 9
18 7nn0
 |-  7 e. NN0
19 eqid
 |-  ; 2 3 = ; 2 3
20 eqid
 |-  ; 2 0 = ; 2 0
21 8t2e16
 |-  ( 8 x. 2 ) = ; 1 6
22 2p2e4
 |-  ( 2 + 2 ) = 4
23 21 22 oveq12i
 |-  ( ( 8 x. 2 ) + ( 2 + 2 ) ) = ( ; 1 6 + 4 )
24 6nn0
 |-  6 e. NN0
25 eqid
 |-  ; 1 6 = ; 1 6
26 1p1e2
 |-  ( 1 + 1 ) = 2
27 6p4e10
 |-  ( 6 + 4 ) = ; 1 0
28 7 24 4 25 26 27 decaddci2
 |-  ( ; 1 6 + 4 ) = ; 2 0
29 23 28 eqtri
 |-  ( ( 8 x. 2 ) + ( 2 + 2 ) ) = ; 2 0
30 8t3e24
 |-  ( 8 x. 3 ) = ; 2 4
31 30 oveq1i
 |-  ( ( 8 x. 3 ) + 0 ) = ( ; 2 4 + 0 )
32 1 4 deccl
 |-  ; 2 4 e. NN0
33 32 nn0cni
 |-  ; 2 4 e. CC
34 33 addid1i
 |-  ( ; 2 4 + 0 ) = ; 2 4
35 31 34 eqtri
 |-  ( ( 8 x. 3 ) + 0 ) = ; 2 4
36 1 14 1 2 19 20 6 4 1 29 35 decma2c
 |-  ( ( 8 x. ; 2 3 ) + ; 2 0 ) = ; ; 2 0 4
37 9t2e18
 |-  ( 9 x. 2 ) = ; 1 8
38 8p2e10
 |-  ( 8 + 2 ) = ; 1 0
39 7 6 1 37 26 38 decaddci2
 |-  ( ( 9 x. 2 ) + 2 ) = ; 2 0
40 9t3e27
 |-  ( 9 x. 3 ) = ; 2 7
41 16 1 14 19 18 1 39 40 decmul2c
 |-  ( 9 x. ; 2 3 ) = ; ; 2 0 7
42 15 6 16 17 18 3 36 41 decmul1c
 |-  ( ; 8 9 x. ; 2 3 ) = ; ; ; 2 0 4 7
43 13 42 eqtr4i
 |-  ( ( 2 ^ ; 1 1 ) - 1 ) = ( ; 8 9 x. ; 2 3 )