| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn |  |-  4 e. NN | 
						
							| 2 | 1 | a1i |  |-  ( N e. ZZ -> 4 e. NN ) | 
						
							| 3 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 4 | 3 | a1i |  |-  ( N e. ZZ -> 3 e. NN0 ) | 
						
							| 5 |  | 3lt4 |  |-  3 < 4 | 
						
							| 6 | 4 5 | jctir |  |-  ( N e. ZZ -> ( 3 e. NN0 /\ 3 < 4 ) ) | 
						
							| 7 |  | modremain |  |-  ( ( N e. ZZ /\ 4 e. NN /\ ( 3 e. NN0 /\ 3 < 4 ) ) -> ( ( N mod 4 ) = 3 <-> E. z e. ZZ ( ( z x. 4 ) + 3 ) = N ) ) | 
						
							| 8 | 2 6 7 | mpd3an23 |  |-  ( N e. ZZ -> ( ( N mod 4 ) = 3 <-> E. z e. ZZ ( ( z x. 4 ) + 3 ) = N ) ) | 
						
							| 9 |  | 2cnd |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> 2 e. CC ) | 
						
							| 10 |  | simpr |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> z e. ZZ ) | 
						
							| 11 |  | 4z |  |-  4 e. ZZ | 
						
							| 12 | 11 | a1i |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> 4 e. ZZ ) | 
						
							| 13 | 10 12 | zmulcld |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( z x. 4 ) e. ZZ ) | 
						
							| 14 | 13 | zcnd |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( z x. 4 ) e. CC ) | 
						
							| 15 |  | 3cn |  |-  3 e. CC | 
						
							| 16 | 15 | a1i |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> 3 e. CC ) | 
						
							| 17 | 9 14 16 | adddid |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( ( z x. 4 ) + 3 ) ) = ( ( 2 x. ( z x. 4 ) ) + ( 2 x. 3 ) ) ) | 
						
							| 18 | 10 | zcnd |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> z e. CC ) | 
						
							| 19 |  | 4cn |  |-  4 e. CC | 
						
							| 20 | 19 | a1i |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> 4 e. CC ) | 
						
							| 21 | 9 18 20 | mul12d |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( z x. 4 ) ) = ( z x. ( 2 x. 4 ) ) ) | 
						
							| 22 |  | 2cn |  |-  2 e. CC | 
						
							| 23 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 24 | 19 22 23 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 25 | 24 | oveq2i |  |-  ( z x. ( 2 x. 4 ) ) = ( z x. 8 ) | 
						
							| 26 | 21 25 | eqtrdi |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( z x. 4 ) ) = ( z x. 8 ) ) | 
						
							| 27 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 28 | 15 22 27 | mulcomli |  |-  ( 2 x. 3 ) = 6 | 
						
							| 29 | 28 | a1i |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. 3 ) = 6 ) | 
						
							| 30 | 26 29 | oveq12d |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( 2 x. ( z x. 4 ) ) + ( 2 x. 3 ) ) = ( ( z x. 8 ) + 6 ) ) | 
						
							| 31 | 17 30 | eqtrd |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( ( z x. 4 ) + 3 ) ) = ( ( z x. 8 ) + 6 ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) = ( ( ( z x. 8 ) + 6 ) + 1 ) ) | 
						
							| 33 |  | id |  |-  ( z e. ZZ -> z e. ZZ ) | 
						
							| 34 |  | 8nn |  |-  8 e. NN | 
						
							| 35 | 34 | nnzi |  |-  8 e. ZZ | 
						
							| 36 | 35 | a1i |  |-  ( z e. ZZ -> 8 e. ZZ ) | 
						
							| 37 | 33 36 | zmulcld |  |-  ( z e. ZZ -> ( z x. 8 ) e. ZZ ) | 
						
							| 38 | 37 | zcnd |  |-  ( z e. ZZ -> ( z x. 8 ) e. CC ) | 
						
							| 39 |  | 6cn |  |-  6 e. CC | 
						
							| 40 | 39 | a1i |  |-  ( z e. ZZ -> 6 e. CC ) | 
						
							| 41 |  | 1cnd |  |-  ( z e. ZZ -> 1 e. CC ) | 
						
							| 42 | 38 40 41 | addassd |  |-  ( z e. ZZ -> ( ( ( z x. 8 ) + 6 ) + 1 ) = ( ( z x. 8 ) + ( 6 + 1 ) ) ) | 
						
							| 43 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 44 | 43 | a1i |  |-  ( z e. ZZ -> ( 6 + 1 ) = 7 ) | 
						
							| 45 | 44 | oveq2d |  |-  ( z e. ZZ -> ( ( z x. 8 ) + ( 6 + 1 ) ) = ( ( z x. 8 ) + 7 ) ) | 
						
							| 46 | 42 45 | eqtrd |  |-  ( z e. ZZ -> ( ( ( z x. 8 ) + 6 ) + 1 ) = ( ( z x. 8 ) + 7 ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( z x. 8 ) + 6 ) + 1 ) = ( ( z x. 8 ) + 7 ) ) | 
						
							| 48 | 32 47 | eqtrd |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) = ( ( z x. 8 ) + 7 ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = ( ( ( z x. 8 ) + 7 ) mod 8 ) ) | 
						
							| 50 |  | nnrp |  |-  ( 8 e. NN -> 8 e. RR+ ) | 
						
							| 51 | 34 50 | mp1i |  |-  ( z e. ZZ -> 8 e. RR+ ) | 
						
							| 52 |  | 0xr |  |-  0 e. RR* | 
						
							| 53 | 52 | a1i |  |-  ( z e. ZZ -> 0 e. RR* ) | 
						
							| 54 |  | 8re |  |-  8 e. RR | 
						
							| 55 | 54 | rexri |  |-  8 e. RR* | 
						
							| 56 | 55 | a1i |  |-  ( z e. ZZ -> 8 e. RR* ) | 
						
							| 57 |  | 7re |  |-  7 e. RR | 
						
							| 58 | 57 | rexri |  |-  7 e. RR* | 
						
							| 59 | 58 | a1i |  |-  ( z e. ZZ -> 7 e. RR* ) | 
						
							| 60 |  | 0re |  |-  0 e. RR | 
						
							| 61 |  | 7pos |  |-  0 < 7 | 
						
							| 62 | 60 57 61 | ltleii |  |-  0 <_ 7 | 
						
							| 63 | 62 | a1i |  |-  ( z e. ZZ -> 0 <_ 7 ) | 
						
							| 64 |  | 7lt8 |  |-  7 < 8 | 
						
							| 65 | 64 | a1i |  |-  ( z e. ZZ -> 7 < 8 ) | 
						
							| 66 | 53 56 59 63 65 | elicod |  |-  ( z e. ZZ -> 7 e. ( 0 [,) 8 ) ) | 
						
							| 67 |  | muladdmodid |  |-  ( ( z e. ZZ /\ 8 e. RR+ /\ 7 e. ( 0 [,) 8 ) ) -> ( ( ( z x. 8 ) + 7 ) mod 8 ) = 7 ) | 
						
							| 68 | 51 66 67 | mpd3an23 |  |-  ( z e. ZZ -> ( ( ( z x. 8 ) + 7 ) mod 8 ) = 7 ) | 
						
							| 69 | 68 | adantl |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( z x. 8 ) + 7 ) mod 8 ) = 7 ) | 
						
							| 70 | 49 69 | eqtrd |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = 7 ) | 
						
							| 71 |  | oveq2 |  |-  ( ( ( z x. 4 ) + 3 ) = N -> ( 2 x. ( ( z x. 4 ) + 3 ) ) = ( 2 x. N ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ( ( z x. 4 ) + 3 ) = N -> ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) = ( ( 2 x. N ) + 1 ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( ( z x. 4 ) + 3 ) = N -> ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = ( ( ( 2 x. N ) + 1 ) mod 8 ) ) | 
						
							| 74 | 73 | eqeq1d |  |-  ( ( ( z x. 4 ) + 3 ) = N -> ( ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = 7 <-> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) | 
						
							| 75 | 70 74 | syl5ibcom |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( z x. 4 ) + 3 ) = N -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) | 
						
							| 76 | 75 | rexlimdva |  |-  ( N e. ZZ -> ( E. z e. ZZ ( ( z x. 4 ) + 3 ) = N -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) | 
						
							| 77 | 8 76 | sylbid |  |-  ( N e. ZZ -> ( ( N mod 4 ) = 3 -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) | 
						
							| 78 | 77 | imp |  |-  ( ( N e. ZZ /\ ( N mod 4 ) = 3 ) -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) |