| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn |
|- 4 e. NN |
| 2 |
1
|
a1i |
|- ( N e. ZZ -> 4 e. NN ) |
| 3 |
|
3nn0 |
|- 3 e. NN0 |
| 4 |
3
|
a1i |
|- ( N e. ZZ -> 3 e. NN0 ) |
| 5 |
|
3lt4 |
|- 3 < 4 |
| 6 |
4 5
|
jctir |
|- ( N e. ZZ -> ( 3 e. NN0 /\ 3 < 4 ) ) |
| 7 |
|
modremain |
|- ( ( N e. ZZ /\ 4 e. NN /\ ( 3 e. NN0 /\ 3 < 4 ) ) -> ( ( N mod 4 ) = 3 <-> E. z e. ZZ ( ( z x. 4 ) + 3 ) = N ) ) |
| 8 |
2 6 7
|
mpd3an23 |
|- ( N e. ZZ -> ( ( N mod 4 ) = 3 <-> E. z e. ZZ ( ( z x. 4 ) + 3 ) = N ) ) |
| 9 |
|
2cnd |
|- ( ( N e. ZZ /\ z e. ZZ ) -> 2 e. CC ) |
| 10 |
|
simpr |
|- ( ( N e. ZZ /\ z e. ZZ ) -> z e. ZZ ) |
| 11 |
|
4z |
|- 4 e. ZZ |
| 12 |
11
|
a1i |
|- ( ( N e. ZZ /\ z e. ZZ ) -> 4 e. ZZ ) |
| 13 |
10 12
|
zmulcld |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( z x. 4 ) e. ZZ ) |
| 14 |
13
|
zcnd |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( z x. 4 ) e. CC ) |
| 15 |
|
3cn |
|- 3 e. CC |
| 16 |
15
|
a1i |
|- ( ( N e. ZZ /\ z e. ZZ ) -> 3 e. CC ) |
| 17 |
9 14 16
|
adddid |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( ( z x. 4 ) + 3 ) ) = ( ( 2 x. ( z x. 4 ) ) + ( 2 x. 3 ) ) ) |
| 18 |
10
|
zcnd |
|- ( ( N e. ZZ /\ z e. ZZ ) -> z e. CC ) |
| 19 |
|
4cn |
|- 4 e. CC |
| 20 |
19
|
a1i |
|- ( ( N e. ZZ /\ z e. ZZ ) -> 4 e. CC ) |
| 21 |
9 18 20
|
mul12d |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( z x. 4 ) ) = ( z x. ( 2 x. 4 ) ) ) |
| 22 |
|
2cn |
|- 2 e. CC |
| 23 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 24 |
19 22 23
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 25 |
24
|
oveq2i |
|- ( z x. ( 2 x. 4 ) ) = ( z x. 8 ) |
| 26 |
21 25
|
eqtrdi |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( z x. 4 ) ) = ( z x. 8 ) ) |
| 27 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 28 |
15 22 27
|
mulcomli |
|- ( 2 x. 3 ) = 6 |
| 29 |
28
|
a1i |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. 3 ) = 6 ) |
| 30 |
26 29
|
oveq12d |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( 2 x. ( z x. 4 ) ) + ( 2 x. 3 ) ) = ( ( z x. 8 ) + 6 ) ) |
| 31 |
17 30
|
eqtrd |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( 2 x. ( ( z x. 4 ) + 3 ) ) = ( ( z x. 8 ) + 6 ) ) |
| 32 |
31
|
oveq1d |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) = ( ( ( z x. 8 ) + 6 ) + 1 ) ) |
| 33 |
|
id |
|- ( z e. ZZ -> z e. ZZ ) |
| 34 |
|
8nn |
|- 8 e. NN |
| 35 |
34
|
nnzi |
|- 8 e. ZZ |
| 36 |
35
|
a1i |
|- ( z e. ZZ -> 8 e. ZZ ) |
| 37 |
33 36
|
zmulcld |
|- ( z e. ZZ -> ( z x. 8 ) e. ZZ ) |
| 38 |
37
|
zcnd |
|- ( z e. ZZ -> ( z x. 8 ) e. CC ) |
| 39 |
|
6cn |
|- 6 e. CC |
| 40 |
39
|
a1i |
|- ( z e. ZZ -> 6 e. CC ) |
| 41 |
|
1cnd |
|- ( z e. ZZ -> 1 e. CC ) |
| 42 |
38 40 41
|
addassd |
|- ( z e. ZZ -> ( ( ( z x. 8 ) + 6 ) + 1 ) = ( ( z x. 8 ) + ( 6 + 1 ) ) ) |
| 43 |
|
6p1e7 |
|- ( 6 + 1 ) = 7 |
| 44 |
43
|
a1i |
|- ( z e. ZZ -> ( 6 + 1 ) = 7 ) |
| 45 |
44
|
oveq2d |
|- ( z e. ZZ -> ( ( z x. 8 ) + ( 6 + 1 ) ) = ( ( z x. 8 ) + 7 ) ) |
| 46 |
42 45
|
eqtrd |
|- ( z e. ZZ -> ( ( ( z x. 8 ) + 6 ) + 1 ) = ( ( z x. 8 ) + 7 ) ) |
| 47 |
46
|
adantl |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( z x. 8 ) + 6 ) + 1 ) = ( ( z x. 8 ) + 7 ) ) |
| 48 |
32 47
|
eqtrd |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) = ( ( z x. 8 ) + 7 ) ) |
| 49 |
48
|
oveq1d |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = ( ( ( z x. 8 ) + 7 ) mod 8 ) ) |
| 50 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
| 51 |
34 50
|
mp1i |
|- ( z e. ZZ -> 8 e. RR+ ) |
| 52 |
|
0xr |
|- 0 e. RR* |
| 53 |
52
|
a1i |
|- ( z e. ZZ -> 0 e. RR* ) |
| 54 |
|
8re |
|- 8 e. RR |
| 55 |
54
|
rexri |
|- 8 e. RR* |
| 56 |
55
|
a1i |
|- ( z e. ZZ -> 8 e. RR* ) |
| 57 |
|
7re |
|- 7 e. RR |
| 58 |
57
|
rexri |
|- 7 e. RR* |
| 59 |
58
|
a1i |
|- ( z e. ZZ -> 7 e. RR* ) |
| 60 |
|
0re |
|- 0 e. RR |
| 61 |
|
7pos |
|- 0 < 7 |
| 62 |
60 57 61
|
ltleii |
|- 0 <_ 7 |
| 63 |
62
|
a1i |
|- ( z e. ZZ -> 0 <_ 7 ) |
| 64 |
|
7lt8 |
|- 7 < 8 |
| 65 |
64
|
a1i |
|- ( z e. ZZ -> 7 < 8 ) |
| 66 |
53 56 59 63 65
|
elicod |
|- ( z e. ZZ -> 7 e. ( 0 [,) 8 ) ) |
| 67 |
|
muladdmodid |
|- ( ( z e. ZZ /\ 8 e. RR+ /\ 7 e. ( 0 [,) 8 ) ) -> ( ( ( z x. 8 ) + 7 ) mod 8 ) = 7 ) |
| 68 |
51 66 67
|
mpd3an23 |
|- ( z e. ZZ -> ( ( ( z x. 8 ) + 7 ) mod 8 ) = 7 ) |
| 69 |
68
|
adantl |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( z x. 8 ) + 7 ) mod 8 ) = 7 ) |
| 70 |
49 69
|
eqtrd |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = 7 ) |
| 71 |
|
oveq2 |
|- ( ( ( z x. 4 ) + 3 ) = N -> ( 2 x. ( ( z x. 4 ) + 3 ) ) = ( 2 x. N ) ) |
| 72 |
71
|
oveq1d |
|- ( ( ( z x. 4 ) + 3 ) = N -> ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) = ( ( 2 x. N ) + 1 ) ) |
| 73 |
72
|
oveq1d |
|- ( ( ( z x. 4 ) + 3 ) = N -> ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = ( ( ( 2 x. N ) + 1 ) mod 8 ) ) |
| 74 |
73
|
eqeq1d |
|- ( ( ( z x. 4 ) + 3 ) = N -> ( ( ( ( 2 x. ( ( z x. 4 ) + 3 ) ) + 1 ) mod 8 ) = 7 <-> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) |
| 75 |
70 74
|
syl5ibcom |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( ( ( z x. 4 ) + 3 ) = N -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) |
| 76 |
75
|
rexlimdva |
|- ( N e. ZZ -> ( E. z e. ZZ ( ( z x. 4 ) + 3 ) = N -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) |
| 77 |
8 76
|
sylbid |
|- ( N e. ZZ -> ( ( N mod 4 ) = 3 -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) ) |
| 78 |
77
|
imp |
|- ( ( N e. ZZ /\ ( N mod 4 ) = 3 ) -> ( ( ( 2 x. N ) + 1 ) mod 8 ) = 7 ) |