| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  4  ∈  ℕ ) | 
						
							| 3 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  3  ∈  ℕ0 ) | 
						
							| 5 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 6 | 4 5 | jctir | ⊢ ( 𝑁  ∈  ℤ  →  ( 3  ∈  ℕ0  ∧  3  <  4 ) ) | 
						
							| 7 |  | modremain | ⊢ ( ( 𝑁  ∈  ℤ  ∧  4  ∈  ℕ  ∧  ( 3  ∈  ℕ0  ∧  3  <  4 ) )  →  ( ( 𝑁  mod  4 )  =  3  ↔  ∃ 𝑧  ∈  ℤ ( ( 𝑧  ·  4 )  +  3 )  =  𝑁 ) ) | 
						
							| 8 | 2 6 7 | mpd3an23 | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑁  mod  4 )  =  3  ↔  ∃ 𝑧  ∈  ℤ ( ( 𝑧  ·  4 )  +  3 )  =  𝑁 ) ) | 
						
							| 9 |  | 2cnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  𝑧  ∈  ℤ ) | 
						
							| 11 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  4  ∈  ℤ ) | 
						
							| 13 | 10 12 | zmulcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ·  4 )  ∈  ℤ ) | 
						
							| 14 | 13 | zcnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ·  4 )  ∈  ℂ ) | 
						
							| 15 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  3  ∈  ℂ ) | 
						
							| 17 | 9 14 16 | adddid | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  =  ( ( 2  ·  ( 𝑧  ·  4 ) )  +  ( 2  ·  3 ) ) ) | 
						
							| 18 | 10 | zcnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  𝑧  ∈  ℂ ) | 
						
							| 19 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  4  ∈  ℂ ) | 
						
							| 21 | 9 18 20 | mul12d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 2  ·  ( 𝑧  ·  4 ) )  =  ( 𝑧  ·  ( 2  ·  4 ) ) ) | 
						
							| 22 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 23 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 24 | 19 22 23 | mulcomli | ⊢ ( 2  ·  4 )  =  8 | 
						
							| 25 | 24 | oveq2i | ⊢ ( 𝑧  ·  ( 2  ·  4 ) )  =  ( 𝑧  ·  8 ) | 
						
							| 26 | 21 25 | eqtrdi | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 2  ·  ( 𝑧  ·  4 ) )  =  ( 𝑧  ·  8 ) ) | 
						
							| 27 |  | 3t2e6 | ⊢ ( 3  ·  2 )  =  6 | 
						
							| 28 | 15 22 27 | mulcomli | ⊢ ( 2  ·  3 )  =  6 | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 2  ·  3 )  =  6 ) | 
						
							| 30 | 26 29 | oveq12d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( 2  ·  ( 𝑧  ·  4 ) )  +  ( 2  ·  3 ) )  =  ( ( 𝑧  ·  8 )  +  6 ) ) | 
						
							| 31 | 17 30 | eqtrd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  =  ( ( 𝑧  ·  8 )  +  6 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  =  ( ( ( 𝑧  ·  8 )  +  6 )  +  1 ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℤ ) | 
						
							| 34 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 35 | 34 | nnzi | ⊢ 8  ∈  ℤ | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  8  ∈  ℤ ) | 
						
							| 37 | 33 36 | zmulcld | ⊢ ( 𝑧  ∈  ℤ  →  ( 𝑧  ·  8 )  ∈  ℤ ) | 
						
							| 38 | 37 | zcnd | ⊢ ( 𝑧  ∈  ℤ  →  ( 𝑧  ·  8 )  ∈  ℂ ) | 
						
							| 39 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 40 | 39 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  6  ∈  ℂ ) | 
						
							| 41 |  | 1cnd | ⊢ ( 𝑧  ∈  ℤ  →  1  ∈  ℂ ) | 
						
							| 42 | 38 40 41 | addassd | ⊢ ( 𝑧  ∈  ℤ  →  ( ( ( 𝑧  ·  8 )  +  6 )  +  1 )  =  ( ( 𝑧  ·  8 )  +  ( 6  +  1 ) ) ) | 
						
							| 43 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  ( 6  +  1 )  =  7 ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝑧  ∈  ℤ  →  ( ( 𝑧  ·  8 )  +  ( 6  +  1 ) )  =  ( ( 𝑧  ·  8 )  +  7 ) ) | 
						
							| 46 | 42 45 | eqtrd | ⊢ ( 𝑧  ∈  ℤ  →  ( ( ( 𝑧  ·  8 )  +  6 )  +  1 )  =  ( ( 𝑧  ·  8 )  +  7 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( ( 𝑧  ·  8 )  +  6 )  +  1 )  =  ( ( 𝑧  ·  8 )  +  7 ) ) | 
						
							| 48 | 32 47 | eqtrd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  =  ( ( 𝑧  ·  8 )  +  7 ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  mod  8 )  =  ( ( ( 𝑧  ·  8 )  +  7 )  mod  8 ) ) | 
						
							| 50 |  | nnrp | ⊢ ( 8  ∈  ℕ  →  8  ∈  ℝ+ ) | 
						
							| 51 | 34 50 | mp1i | ⊢ ( 𝑧  ∈  ℤ  →  8  ∈  ℝ+ ) | 
						
							| 52 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 53 | 52 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  0  ∈  ℝ* ) | 
						
							| 54 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 55 | 54 | rexri | ⊢ 8  ∈  ℝ* | 
						
							| 56 | 55 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  8  ∈  ℝ* ) | 
						
							| 57 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 58 | 57 | rexri | ⊢ 7  ∈  ℝ* | 
						
							| 59 | 58 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  7  ∈  ℝ* ) | 
						
							| 60 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 61 |  | 7pos | ⊢ 0  <  7 | 
						
							| 62 | 60 57 61 | ltleii | ⊢ 0  ≤  7 | 
						
							| 63 | 62 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  0  ≤  7 ) | 
						
							| 64 |  | 7lt8 | ⊢ 7  <  8 | 
						
							| 65 | 64 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  7  <  8 ) | 
						
							| 66 | 53 56 59 63 65 | elicod | ⊢ ( 𝑧  ∈  ℤ  →  7  ∈  ( 0 [,) 8 ) ) | 
						
							| 67 |  | muladdmodid | ⊢ ( ( 𝑧  ∈  ℤ  ∧  8  ∈  ℝ+  ∧  7  ∈  ( 0 [,) 8 ) )  →  ( ( ( 𝑧  ·  8 )  +  7 )  mod  8 )  =  7 ) | 
						
							| 68 | 51 66 67 | mpd3an23 | ⊢ ( 𝑧  ∈  ℤ  →  ( ( ( 𝑧  ·  8 )  +  7 )  mod  8 )  =  7 ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( ( 𝑧  ·  8 )  +  7 )  mod  8 )  =  7 ) | 
						
							| 70 | 49 69 | eqtrd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  mod  8 )  =  7 ) | 
						
							| 71 |  | oveq2 | ⊢ ( ( ( 𝑧  ·  4 )  +  3 )  =  𝑁  →  ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  =  ( 2  ·  𝑁 ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( ( ( 𝑧  ·  4 )  +  3 )  =  𝑁  →  ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( ( 𝑧  ·  4 )  +  3 )  =  𝑁  →  ( ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  mod  8 )  =  ( ( ( 2  ·  𝑁 )  +  1 )  mod  8 ) ) | 
						
							| 74 | 73 | eqeq1d | ⊢ ( ( ( 𝑧  ·  4 )  +  3 )  =  𝑁  →  ( ( ( ( 2  ·  ( ( 𝑧  ·  4 )  +  3 ) )  +  1 )  mod  8 )  =  7  ↔  ( ( ( 2  ·  𝑁 )  +  1 )  mod  8 )  =  7 ) ) | 
						
							| 75 | 70 74 | syl5ibcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( ( 𝑧  ·  4 )  +  3 )  =  𝑁  →  ( ( ( 2  ·  𝑁 )  +  1 )  mod  8 )  =  7 ) ) | 
						
							| 76 | 75 | rexlimdva | ⊢ ( 𝑁  ∈  ℤ  →  ( ∃ 𝑧  ∈  ℤ ( ( 𝑧  ·  4 )  +  3 )  =  𝑁  →  ( ( ( 2  ·  𝑁 )  +  1 )  mod  8 )  =  7 ) ) | 
						
							| 77 | 8 76 | sylbid | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑁  mod  4 )  =  3  →  ( ( ( 2  ·  𝑁 )  +  1 )  mod  8 )  =  7 ) ) | 
						
							| 78 | 77 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑁  mod  4 )  =  3 )  →  ( ( ( 2  ·  𝑁 )  +  1 )  mod  8 )  =  7 ) |