Step |
Hyp |
Ref |
Expression |
1 |
|
4nn |
⊢ 4 ∈ ℕ |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 4 ∈ ℕ ) |
3 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 3 ∈ ℕ0 ) |
5 |
|
3lt4 |
⊢ 3 < 4 |
6 |
4 5
|
jctir |
⊢ ( 𝑁 ∈ ℤ → ( 3 ∈ ℕ0 ∧ 3 < 4 ) ) |
7 |
|
modremain |
⊢ ( ( 𝑁 ∈ ℤ ∧ 4 ∈ ℕ ∧ ( 3 ∈ ℕ0 ∧ 3 < 4 ) ) → ( ( 𝑁 mod 4 ) = 3 ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 4 ) + 3 ) = 𝑁 ) ) |
8 |
2 6 7
|
mpd3an23 |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 4 ) = 3 ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 4 ) + 3 ) = 𝑁 ) ) |
9 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 2 ∈ ℂ ) |
10 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℤ ) |
11 |
|
4z |
⊢ 4 ∈ ℤ |
12 |
11
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 4 ∈ ℤ ) |
13 |
10 12
|
zmulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 4 ) ∈ ℤ ) |
14 |
13
|
zcnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 4 ) ∈ ℂ ) |
15 |
|
3cn |
⊢ 3 ∈ ℂ |
16 |
15
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 3 ∈ ℂ ) |
17 |
9 14 16
|
adddid |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) = ( ( 2 · ( 𝑧 · 4 ) ) + ( 2 · 3 ) ) ) |
18 |
10
|
zcnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℂ ) |
19 |
|
4cn |
⊢ 4 ∈ ℂ |
20 |
19
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 4 ∈ ℂ ) |
21 |
9 18 20
|
mul12d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 2 · ( 𝑧 · 4 ) ) = ( 𝑧 · ( 2 · 4 ) ) ) |
22 |
|
2cn |
⊢ 2 ∈ ℂ |
23 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
24 |
19 22 23
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
25 |
24
|
oveq2i |
⊢ ( 𝑧 · ( 2 · 4 ) ) = ( 𝑧 · 8 ) |
26 |
21 25
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 2 · ( 𝑧 · 4 ) ) = ( 𝑧 · 8 ) ) |
27 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
28 |
15 22 27
|
mulcomli |
⊢ ( 2 · 3 ) = 6 |
29 |
28
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 2 · 3 ) = 6 ) |
30 |
26 29
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 2 · ( 𝑧 · 4 ) ) + ( 2 · 3 ) ) = ( ( 𝑧 · 8 ) + 6 ) ) |
31 |
17 30
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) = ( ( 𝑧 · 8 ) + 6 ) ) |
32 |
31
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) = ( ( ( 𝑧 · 8 ) + 6 ) + 1 ) ) |
33 |
|
id |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℤ ) |
34 |
|
8nn |
⊢ 8 ∈ ℕ |
35 |
34
|
nnzi |
⊢ 8 ∈ ℤ |
36 |
35
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 8 ∈ ℤ ) |
37 |
33 36
|
zmulcld |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 · 8 ) ∈ ℤ ) |
38 |
37
|
zcnd |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 · 8 ) ∈ ℂ ) |
39 |
|
6cn |
⊢ 6 ∈ ℂ |
40 |
39
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 6 ∈ ℂ ) |
41 |
|
1cnd |
⊢ ( 𝑧 ∈ ℤ → 1 ∈ ℂ ) |
42 |
38 40 41
|
addassd |
⊢ ( 𝑧 ∈ ℤ → ( ( ( 𝑧 · 8 ) + 6 ) + 1 ) = ( ( 𝑧 · 8 ) + ( 6 + 1 ) ) ) |
43 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
44 |
43
|
a1i |
⊢ ( 𝑧 ∈ ℤ → ( 6 + 1 ) = 7 ) |
45 |
44
|
oveq2d |
⊢ ( 𝑧 ∈ ℤ → ( ( 𝑧 · 8 ) + ( 6 + 1 ) ) = ( ( 𝑧 · 8 ) + 7 ) ) |
46 |
42 45
|
eqtrd |
⊢ ( 𝑧 ∈ ℤ → ( ( ( 𝑧 · 8 ) + 6 ) + 1 ) = ( ( 𝑧 · 8 ) + 7 ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑧 · 8 ) + 6 ) + 1 ) = ( ( 𝑧 · 8 ) + 7 ) ) |
48 |
32 47
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) = ( ( 𝑧 · 8 ) + 7 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) mod 8 ) = ( ( ( 𝑧 · 8 ) + 7 ) mod 8 ) ) |
50 |
|
nnrp |
⊢ ( 8 ∈ ℕ → 8 ∈ ℝ+ ) |
51 |
34 50
|
mp1i |
⊢ ( 𝑧 ∈ ℤ → 8 ∈ ℝ+ ) |
52 |
|
0xr |
⊢ 0 ∈ ℝ* |
53 |
52
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 0 ∈ ℝ* ) |
54 |
|
8re |
⊢ 8 ∈ ℝ |
55 |
54
|
rexri |
⊢ 8 ∈ ℝ* |
56 |
55
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 8 ∈ ℝ* ) |
57 |
|
7re |
⊢ 7 ∈ ℝ |
58 |
57
|
rexri |
⊢ 7 ∈ ℝ* |
59 |
58
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 7 ∈ ℝ* ) |
60 |
|
0re |
⊢ 0 ∈ ℝ |
61 |
|
7pos |
⊢ 0 < 7 |
62 |
60 57 61
|
ltleii |
⊢ 0 ≤ 7 |
63 |
62
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 0 ≤ 7 ) |
64 |
|
7lt8 |
⊢ 7 < 8 |
65 |
64
|
a1i |
⊢ ( 𝑧 ∈ ℤ → 7 < 8 ) |
66 |
53 56 59 63 65
|
elicod |
⊢ ( 𝑧 ∈ ℤ → 7 ∈ ( 0 [,) 8 ) ) |
67 |
|
muladdmodid |
⊢ ( ( 𝑧 ∈ ℤ ∧ 8 ∈ ℝ+ ∧ 7 ∈ ( 0 [,) 8 ) ) → ( ( ( 𝑧 · 8 ) + 7 ) mod 8 ) = 7 ) |
68 |
51 66 67
|
mpd3an23 |
⊢ ( 𝑧 ∈ ℤ → ( ( ( 𝑧 · 8 ) + 7 ) mod 8 ) = 7 ) |
69 |
68
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑧 · 8 ) + 7 ) mod 8 ) = 7 ) |
70 |
49 69
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) mod 8 ) = 7 ) |
71 |
|
oveq2 |
⊢ ( ( ( 𝑧 · 4 ) + 3 ) = 𝑁 → ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) = ( 2 · 𝑁 ) ) |
72 |
71
|
oveq1d |
⊢ ( ( ( 𝑧 · 4 ) + 3 ) = 𝑁 → ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) = ( ( 2 · 𝑁 ) + 1 ) ) |
73 |
72
|
oveq1d |
⊢ ( ( ( 𝑧 · 4 ) + 3 ) = 𝑁 → ( ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) mod 8 ) = ( ( ( 2 · 𝑁 ) + 1 ) mod 8 ) ) |
74 |
73
|
eqeq1d |
⊢ ( ( ( 𝑧 · 4 ) + 3 ) = 𝑁 → ( ( ( ( 2 · ( ( 𝑧 · 4 ) + 3 ) ) + 1 ) mod 8 ) = 7 ↔ ( ( ( 2 · 𝑁 ) + 1 ) mod 8 ) = 7 ) ) |
75 |
70 74
|
syl5ibcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑧 · 4 ) + 3 ) = 𝑁 → ( ( ( 2 · 𝑁 ) + 1 ) mod 8 ) = 7 ) ) |
76 |
75
|
rexlimdva |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 4 ) + 3 ) = 𝑁 → ( ( ( 2 · 𝑁 ) + 1 ) mod 8 ) = 7 ) ) |
77 |
8 76
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 4 ) = 3 → ( ( ( 2 · 𝑁 ) + 1 ) mod 8 ) = 7 ) ) |
78 |
77
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 mod 4 ) = 3 ) → ( ( ( 2 · 𝑁 ) + 1 ) mod 8 ) = 7 ) |