| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc | ⊢ ( ( 𝑄  mod  8 )  =  7  →  ( ( 𝑄  mod  8 )  =  1  ∨  ( 𝑄  mod  8 )  =  7 ) ) | 
						
							| 2 |  | ovex | ⊢ ( 𝑄  mod  8 )  ∈  V | 
						
							| 3 |  | elprg | ⊢ ( ( 𝑄  mod  8 )  ∈  V  →  ( ( 𝑄  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( 𝑄  mod  8 )  =  1  ∨  ( 𝑄  mod  8 )  =  7 ) ) ) | 
						
							| 4 | 2 3 | mp1i | ⊢ ( ( 𝑄  mod  8 )  =  7  →  ( ( 𝑄  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( 𝑄  mod  8 )  =  1  ∨  ( 𝑄  mod  8 )  =  7 ) ) ) | 
						
							| 5 | 1 4 | mpbird | ⊢ ( ( 𝑄  mod  8 )  =  7  →  ( 𝑄  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 6 |  | 2lgs | ⊢ ( 𝑄  ∈  ℙ  →  ( ( 2  /L  𝑄 )  =  1  ↔  ( 𝑄  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 2  /L  𝑄 )  =  1  ↔  ( 𝑄  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 8 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  𝑄  ∈  ℙ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  𝑄  ∈  ℙ ) | 
						
							| 11 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 12 | 11 | a1i | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  2  ∈  ℝ ) | 
						
							| 13 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 14 | 11 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  2  ∈  ℝ ) | 
						
							| 15 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 16 | 15 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 17 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  1  <  2 ) | 
						
							| 19 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 20 | 14 16 18 19 | mulgt1d | ⊢ ( 𝑃  ∈  ℙ  →  1  <  ( 2  ·  𝑃 ) ) | 
						
							| 21 | 13 20 | eqbrtrid | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  −  1 )  <  ( 2  ·  𝑃 ) ) | 
						
							| 22 |  | 1red | ⊢ ( 𝑃  ∈  ℙ  →  1  ∈  ℝ ) | 
						
							| 23 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  2  ∈  ℕ ) | 
						
							| 25 | 24 15 | nnmulcld | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  ·  𝑃 )  ∈  ℕ ) | 
						
							| 26 | 25 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  ·  𝑃 )  ∈  ℝ ) | 
						
							| 27 | 14 22 26 | ltsubaddd | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 2  −  1 )  <  ( 2  ·  𝑃 )  ↔  2  <  ( ( 2  ·  𝑃 )  +  1 ) ) ) | 
						
							| 28 | 21 27 | mpbid | ⊢ ( 𝑃  ∈  ℙ  →  2  <  ( ( 2  ·  𝑃 )  +  1 ) ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  2  <  ( ( 2  ·  𝑃 )  +  1 ) ) | 
						
							| 30 |  | breq2 | ⊢ ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  →  ( 2  <  𝑄  ↔  2  <  ( ( 2  ·  𝑃 )  +  1 ) ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( 2  <  𝑄  ↔  2  <  ( ( 2  ·  𝑃 )  +  1 ) ) ) | 
						
							| 32 | 29 31 | mpbird | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  2  <  𝑄 ) | 
						
							| 33 | 12 32 | gtned | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  𝑄  ≠  2 ) | 
						
							| 34 |  | eldifsn | ⊢ ( 𝑄  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑄  ∈  ℙ  ∧  𝑄  ≠  2 ) ) | 
						
							| 35 | 10 33 34 | sylanbrc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  𝑄  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 36 |  | lgsqrmodndvds | ⊢ ( ( 2  ∈  ℤ  ∧  𝑄  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2  /L  𝑄 )  =  1  →  ∃ 𝑚  ∈  ℤ ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 ) ) ) | 
						
							| 37 | 8 35 36 | sylancr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 2  /L  𝑄 )  =  1  →  ∃ 𝑚  ∈  ℤ ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 ) ) ) | 
						
							| 38 |  | prmnn | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℕ ) | 
						
							| 39 | 38 | nncnd | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℂ ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  𝑄  ∈  ℂ ) | 
						
							| 41 |  | 1cnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  1  ∈  ℂ ) | 
						
							| 42 |  | 2cnd | ⊢ ( 𝑃  ∈  ℙ  →  2  ∈  ℂ ) | 
						
							| 43 | 15 | nncnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 44 | 42 43 | mulcld | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  ·  𝑃 )  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 2  ·  𝑃 )  ∈  ℂ ) | 
						
							| 46 | 40 41 45 | subadd2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( 𝑄  −  1 )  =  ( 2  ·  𝑃 )  ↔  ( ( 2  ·  𝑃 )  +  1 )  =  𝑄 ) ) | 
						
							| 47 |  | prmz | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℤ ) | 
						
							| 48 |  | peano2zm | ⊢ ( 𝑄  ∈  ℤ  →  ( 𝑄  −  1 )  ∈  ℤ ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝑄  ∈  ℙ  →  ( 𝑄  −  1 )  ∈  ℤ ) | 
						
							| 50 | 49 | zcnd | ⊢ ( 𝑄  ∈  ℙ  →  ( 𝑄  −  1 )  ∈  ℂ ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑄  −  1 )  ∈  ℂ ) | 
						
							| 52 | 43 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  𝑃  ∈  ℂ ) | 
						
							| 53 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 54 | 53 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 55 |  | divmul2 | ⊢ ( ( ( 𝑄  −  1 )  ∈  ℂ  ∧  𝑃  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 𝑄  −  1 )  /  2 )  =  𝑃  ↔  ( 𝑄  −  1 )  =  ( 2  ·  𝑃 ) ) ) | 
						
							| 56 | 51 52 54 55 | syl3anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( ( 𝑄  −  1 )  /  2 )  =  𝑃  ↔  ( 𝑄  −  1 )  =  ( 2  ·  𝑃 ) ) ) | 
						
							| 57 |  | eqcom | ⊢ ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ↔  ( ( 2  ·  𝑃 )  +  1 )  =  𝑄 ) | 
						
							| 58 | 57 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ↔  ( ( 2  ·  𝑃 )  +  1 )  =  𝑄 ) ) | 
						
							| 59 | 46 56 58 | 3bitr4rd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ↔  ( ( 𝑄  −  1 )  /  2 )  =  𝑃 ) ) | 
						
							| 60 | 59 | biimpa | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 𝑄  −  1 )  /  2 )  =  𝑃 ) | 
						
							| 61 |  | oveq2 | ⊢ ( ( ( 𝑄  −  1 )  /  2 )  =  𝑃  →  ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 ) ) | 
						
							| 62 |  | zsqcl | ⊢ ( 𝑚  ∈  ℤ  →  ( 𝑚 ↑ 2 )  ∈  ℤ ) | 
						
							| 63 | 62 | ad2antlr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) )  →  ( 𝑚 ↑ 2 )  ∈  ℤ ) | 
						
							| 64 | 8 | a1i | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) )  →  2  ∈  ℤ ) | 
						
							| 65 |  | oveq1 | ⊢ ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  →  ( 𝑄  −  1 )  =  ( ( ( 2  ·  𝑃 )  +  1 )  −  1 ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( 𝑄  −  1 )  =  ( ( ( 2  ·  𝑃 )  +  1 )  −  1 ) ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 𝑄  −  1 )  /  2 )  =  ( ( ( ( 2  ·  𝑃 )  +  1 )  −  1 )  /  2 ) ) | 
						
							| 68 |  | pncan1 | ⊢ ( ( 2  ·  𝑃 )  ∈  ℂ  →  ( ( ( 2  ·  𝑃 )  +  1 )  −  1 )  =  ( 2  ·  𝑃 ) ) | 
						
							| 69 | 44 68 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( ( ( 2  ·  𝑃 )  +  1 )  −  1 )  =  ( 2  ·  𝑃 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑃  ∈  ℙ  →  ( ( ( ( 2  ·  𝑃 )  +  1 )  −  1 )  /  2 )  =  ( ( 2  ·  𝑃 )  /  2 ) ) | 
						
							| 71 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 72 | 71 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  2  ≠  0 ) | 
						
							| 73 | 43 42 72 | divcan3d | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 2  ·  𝑃 )  /  2 )  =  𝑃 ) | 
						
							| 74 | 70 73 | eqtrd | ⊢ ( 𝑃  ∈  ℙ  →  ( ( ( ( 2  ·  𝑃 )  +  1 )  −  1 )  /  2 )  =  𝑃 ) | 
						
							| 75 | 74 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( ( ( 2  ·  𝑃 )  +  1 )  −  1 )  /  2 )  =  𝑃 ) | 
						
							| 76 | 67 75 | eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 𝑄  −  1 )  /  2 )  =  𝑃 ) | 
						
							| 77 | 15 | nnnn0d | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ0 ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 79 | 76 78 | eqeltrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 𝑄  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 80 | 38 | nnrpd | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℝ+ ) | 
						
							| 81 | 80 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  𝑄  ∈  ℝ+ ) | 
						
							| 82 | 79 81 | jca | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( ( 𝑄  −  1 )  /  2 )  ∈  ℕ0  ∧  𝑄  ∈  ℝ+ ) ) | 
						
							| 83 | 82 | ad2antrr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) )  →  ( ( ( 𝑄  −  1 )  /  2 )  ∈  ℕ0  ∧  𝑄  ∈  ℝ+ ) ) | 
						
							| 84 |  | simpr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) )  →  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) ) | 
						
							| 85 |  | modexp | ⊢ ( ( ( ( 𝑚 ↑ 2 )  ∈  ℤ  ∧  2  ∈  ℤ )  ∧  ( ( ( 𝑄  −  1 )  /  2 )  ∈  ℕ0  ∧  𝑄  ∈  ℝ+ )  ∧  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 ) ) | 
						
							| 86 | 63 64 83 84 85 | syl211anc | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 ) )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 ) ) | 
						
							| 87 | 86 | ex | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 ) ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 ) ) ) | 
						
							| 89 |  | 2cnd | ⊢ ( 𝑄  ∈  ℙ  →  2  ∈  ℂ ) | 
						
							| 90 | 71 | a1i | ⊢ ( 𝑄  ∈  ℙ  →  2  ≠  0 ) | 
						
							| 91 | 50 89 90 | divcan2d | ⊢ ( 𝑄  ∈  ℙ  →  ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) )  =  ( 𝑄  −  1 ) ) | 
						
							| 92 | 91 | eqcomd | ⊢ ( 𝑄  ∈  ℙ  →  ( 𝑄  −  1 )  =  ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) ) ) | 
						
							| 93 | 92 | oveq2d | ⊢ ( 𝑄  ∈  ℙ  →  ( 𝑚 ↑ ( 𝑄  −  1 ) )  =  ( 𝑚 ↑ ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) ) ) ) | 
						
							| 94 | 93 | ad3antlr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( 𝑚 ↑ ( 𝑄  −  1 ) )  =  ( 𝑚 ↑ ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) ) ) ) | 
						
							| 95 |  | zcn | ⊢ ( 𝑚  ∈  ℤ  →  𝑚  ∈  ℂ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  𝑚  ∈  ℂ ) | 
						
							| 97 | 79 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( 𝑄  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 98 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 99 | 98 | a1i | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  2  ∈  ℕ0 ) | 
						
							| 100 | 96 97 99 | expmuld | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( 𝑚 ↑ ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) ) )  =  ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) ) ) | 
						
							| 101 | 94 100 | eqtr2d | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 𝑚 ↑ ( 𝑄  −  1 ) ) ) | 
						
							| 102 | 101 | oveq1d | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 𝑚 ↑ ( 𝑄  −  1 ) )  mod  𝑄 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 𝑚 ↑ ( 𝑄  −  1 ) )  mod  𝑄 ) ) | 
						
							| 104 |  | vfermltl | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑚  ∈  ℤ  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( 𝑚 ↑ ( 𝑄  −  1 ) )  mod  𝑄 )  =  1 ) | 
						
							| 105 | 104 | ad5ant245 | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( 𝑚 ↑ ( 𝑄  −  1 ) )  mod  𝑄 )  =  1 ) | 
						
							| 106 | 103 105 | eqtrd | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  1 ) | 
						
							| 107 |  | oveq1 | ⊢ ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) ) | 
						
							| 108 | 106 107 | eqeqan12d | ⊢ ( ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  ∧  ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 ) )  →  ( ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  ↔  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) ) ) | 
						
							| 109 |  | id | ⊢ ( 1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 )  →  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) ) | 
						
							| 110 | 109 | eqcomd | ⊢ ( 1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 )  →  ( ( 2 ↑ 𝑃 )  mod  𝑄 )  =  1 ) | 
						
							| 111 | 38 | nnred | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℝ ) | 
						
							| 112 |  | prmgt1 | ⊢ ( 𝑄  ∈  ℙ  →  1  <  𝑄 ) | 
						
							| 113 |  | 1mod | ⊢ ( ( 𝑄  ∈  ℝ  ∧  1  <  𝑄 )  →  ( 1  mod  𝑄 )  =  1 ) | 
						
							| 114 | 111 112 113 | syl2anc | ⊢ ( 𝑄  ∈  ℙ  →  ( 1  mod  𝑄 )  =  1 ) | 
						
							| 115 | 114 | eqcomd | ⊢ ( 𝑄  ∈  ℙ  →  1  =  ( 1  mod  𝑄 ) ) | 
						
							| 116 | 115 | ad3antlr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  1  =  ( 1  mod  𝑄 ) ) | 
						
							| 117 | 110 116 | sylan9eqr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) )  →  ( ( 2 ↑ 𝑃 )  mod  𝑄 )  =  ( 1  mod  𝑄 ) ) | 
						
							| 118 | 38 | ad4antlr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) )  →  𝑄  ∈  ℕ ) | 
						
							| 119 |  | zexpcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℕ0 )  →  ( 2 ↑ 𝑃 )  ∈  ℤ ) | 
						
							| 120 | 8 77 119 | sylancr | ⊢ ( 𝑃  ∈  ℙ  →  ( 2 ↑ 𝑃 )  ∈  ℤ ) | 
						
							| 121 | 120 | ad4antr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) )  →  ( 2 ↑ 𝑃 )  ∈  ℤ ) | 
						
							| 122 |  | 1zzd | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) )  →  1  ∈  ℤ ) | 
						
							| 123 |  | moddvds | ⊢ ( ( 𝑄  ∈  ℕ  ∧  ( 2 ↑ 𝑃 )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( ( 2 ↑ 𝑃 )  mod  𝑄 )  =  ( 1  mod  𝑄 )  ↔  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 124 | 118 121 122 123 | syl3anc | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) )  →  ( ( ( 2 ↑ 𝑃 )  mod  𝑄 )  =  ( 1  mod  𝑄 )  ↔  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 125 | 117 124 | mpbid | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 ) )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) | 
						
							| 126 | 125 | ex | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( 1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 127 | 126 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  ∧  ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 ) )  →  ( 1  =  ( ( 2 ↑ 𝑃 )  mod  𝑄 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 128 | 108 127 | sylbid | ⊢ ( ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  ∧  ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 ) )  →  ( ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 129 | 128 | ex | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  ( ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 130 | 129 | com23 | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( ( ( 𝑚 ↑ 2 ) ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  =  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  mod  𝑄 )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 131 | 88 130 | syld | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 132 | 131 | ex | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ¬  𝑄  ∥  𝑚  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) ) | 
						
							| 133 | 132 | com23 | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  →  ( ¬  𝑄  ∥  𝑚  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) ) | 
						
							| 134 | 133 | impd | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 135 | 134 | com23 | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  ∧  𝑚  ∈  ℤ )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  ( ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 136 | 135 | ex | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( 𝑚  ∈  ℤ  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  ( ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) ) | 
						
							| 137 | 136 | com23 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 2 ↑ ( ( 𝑄  −  1 )  /  2 ) )  =  ( 2 ↑ 𝑃 )  →  ( 𝑚  ∈  ℤ  →  ( ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) ) | 
						
							| 138 | 61 137 | syl5 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( ( 𝑄  −  1 )  /  2 )  =  𝑃  →  ( 𝑚  ∈  ℤ  →  ( ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) ) | 
						
							| 139 | 60 138 | mpd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( 𝑚  ∈  ℤ  →  ( ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 140 | 139 | rexlimdv | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ∃ 𝑚  ∈  ℤ ( ( ( 𝑚 ↑ 2 )  mod  𝑄 )  =  ( 2  mod  𝑄 )  ∧  ¬  𝑄  ∥  𝑚 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 141 | 37 140 | syld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 2  /L  𝑄 )  =  1  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 142 | 7 141 | sylbird | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 𝑄  mod  8 )  ∈  { 1 ,  7 }  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 143 | 5 142 | syl5 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) )  →  ( ( 𝑄  mod  8 )  =  7  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) | 
						
							| 144 | 143 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  →  ( ( 𝑄  mod  8 )  =  7  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 145 | 144 | com23 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( 𝑄  mod  8 )  =  7  →  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) | 
						
							| 146 | 145 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑄  ∈  ℙ  →  ( ( 𝑄  mod  8 )  =  7  →  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) ) ) ) | 
						
							| 147 | 146 | 3imp2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑄  ∈  ℙ  ∧  ( 𝑄  mod  8 )  =  7  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) ) )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) |