Metamath Proof Explorer


Theorem sgprmdvdsmersenne

Description: If P is a Sophie Germain prime (i.e. Q = ( ( 2 x. P ) + 1 ) is also prime) with P == 3 (mod 4 ), then Q divides the P-th Mersenne number M_P. (Contributed by AV, 20-Aug-2021)

Ref Expression
Assertion sgprmdvdsmersenne ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 ∥ ( ( 2 ↑ 𝑃 ) − 1 ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑃 ∈ ℙ )
2 simprr ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 ∈ ℙ )
3 oveq1 ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) → ( 𝑄 mod 8 ) = ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) )
4 3 adantr ( ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) → ( 𝑄 mod 8 ) = ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) )
5 prmz ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ )
6 mod42tp1mod8 ( ( 𝑃 ∈ ℤ ∧ ( 𝑃 mod 4 ) = 3 ) → ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) = 7 )
7 5 6 sylan ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) → ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) = 7 )
8 4 7 sylan9eqr ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → ( 𝑄 mod 8 ) = 7 )
9 simprl ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 = ( ( 2 · 𝑃 ) + 1 ) )
10 sfprmdvdsmersenne ( ( 𝑃 ∈ ℙ ∧ ( 𝑄 ∈ ℙ ∧ ( 𝑄 mod 8 ) = 7 ∧ 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ) ) → 𝑄 ∥ ( ( 2 ↑ 𝑃 ) − 1 ) )
11 1 2 8 9 10 syl13anc ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 ∥ ( ( 2 ↑ 𝑃 ) − 1 ) )