| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑃 ∈ ℙ ) |
| 2 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 ∈ ℙ ) |
| 3 |
|
oveq1 |
⊢ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) → ( 𝑄 mod 8 ) = ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) → ( 𝑄 mod 8 ) = ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) ) |
| 5 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 6 |
|
mod42tp1mod8 |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑃 mod 4 ) = 3 ) → ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) = 7 ) |
| 7 |
5 6
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) → ( ( ( 2 · 𝑃 ) + 1 ) mod 8 ) = 7 ) |
| 8 |
4 7
|
sylan9eqr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → ( 𝑄 mod 8 ) = 7 ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ) |
| 10 |
|
sfprmdvdsmersenne |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑄 ∈ ℙ ∧ ( 𝑄 mod 8 ) = 7 ∧ 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ) ) → 𝑄 ∥ ( ( 2 ↑ 𝑃 ) − 1 ) ) |
| 11 |
1 2 8 9 10
|
syl13anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 3 ) ∧ ( 𝑄 = ( ( 2 · 𝑃 ) + 1 ) ∧ 𝑄 ∈ ℙ ) ) → 𝑄 ∥ ( ( 2 ↑ 𝑃 ) − 1 ) ) |