| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  3 )  ∧  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ∧  𝑄  ∈  ℙ ) )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | simprr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  3 )  ∧  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ∧  𝑄  ∈  ℙ ) )  →  𝑄  ∈  ℙ ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  →  ( 𝑄  mod  8 )  =  ( ( ( 2  ·  𝑃 )  +  1 )  mod  8 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ∧  𝑄  ∈  ℙ )  →  ( 𝑄  mod  8 )  =  ( ( ( 2  ·  𝑃 )  +  1 )  mod  8 ) ) | 
						
							| 5 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 6 |  | mod42tp1mod8 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝑃  mod  4 )  =  3 )  →  ( ( ( 2  ·  𝑃 )  +  1 )  mod  8 )  =  7 ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  3 )  →  ( ( ( 2  ·  𝑃 )  +  1 )  mod  8 )  =  7 ) | 
						
							| 8 | 4 7 | sylan9eqr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  3 )  ∧  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ∧  𝑄  ∈  ℙ ) )  →  ( 𝑄  mod  8 )  =  7 ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  3 )  ∧  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ∧  𝑄  ∈  ℙ ) )  →  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) ) | 
						
							| 10 |  | sfprmdvdsmersenne | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑄  ∈  ℙ  ∧  ( 𝑄  mod  8 )  =  7  ∧  𝑄  =  ( ( 2  ·  𝑃 )  +  1 ) ) )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) | 
						
							| 11 | 1 2 8 9 10 | syl13anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  3 )  ∧  ( 𝑄  =  ( ( 2  ·  𝑃 )  +  1 )  ∧  𝑄  ∈  ℙ ) )  →  𝑄  ∥  ( ( 2 ↑ 𝑃 )  −  1 ) ) |