Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> P e. Prime ) |
2 |
|
simprr |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> Q e. Prime ) |
3 |
|
oveq1 |
|- ( Q = ( ( 2 x. P ) + 1 ) -> ( Q mod 8 ) = ( ( ( 2 x. P ) + 1 ) mod 8 ) ) |
4 |
3
|
adantr |
|- ( ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) -> ( Q mod 8 ) = ( ( ( 2 x. P ) + 1 ) mod 8 ) ) |
5 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
6 |
|
mod42tp1mod8 |
|- ( ( P e. ZZ /\ ( P mod 4 ) = 3 ) -> ( ( ( 2 x. P ) + 1 ) mod 8 ) = 7 ) |
7 |
5 6
|
sylan |
|- ( ( P e. Prime /\ ( P mod 4 ) = 3 ) -> ( ( ( 2 x. P ) + 1 ) mod 8 ) = 7 ) |
8 |
4 7
|
sylan9eqr |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> ( Q mod 8 ) = 7 ) |
9 |
|
simprl |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> Q = ( ( 2 x. P ) + 1 ) ) |
10 |
|
sfprmdvdsmersenne |
|- ( ( P e. Prime /\ ( Q e. Prime /\ ( Q mod 8 ) = 7 /\ Q = ( ( 2 x. P ) + 1 ) ) ) -> Q || ( ( 2 ^ P ) - 1 ) ) |
11 |
1 2 8 9 10
|
syl13anc |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> Q || ( ( 2 ^ P ) - 1 ) ) |