| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> P e. Prime ) | 
						
							| 2 |  | simprr |  |-  ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> Q e. Prime ) | 
						
							| 3 |  | oveq1 |  |-  ( Q = ( ( 2 x. P ) + 1 ) -> ( Q mod 8 ) = ( ( ( 2 x. P ) + 1 ) mod 8 ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) -> ( Q mod 8 ) = ( ( ( 2 x. P ) + 1 ) mod 8 ) ) | 
						
							| 5 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 6 |  | mod42tp1mod8 |  |-  ( ( P e. ZZ /\ ( P mod 4 ) = 3 ) -> ( ( ( 2 x. P ) + 1 ) mod 8 ) = 7 ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( P e. Prime /\ ( P mod 4 ) = 3 ) -> ( ( ( 2 x. P ) + 1 ) mod 8 ) = 7 ) | 
						
							| 8 | 4 7 | sylan9eqr |  |-  ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> ( Q mod 8 ) = 7 ) | 
						
							| 9 |  | simprl |  |-  ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> Q = ( ( 2 x. P ) + 1 ) ) | 
						
							| 10 |  | sfprmdvdsmersenne |  |-  ( ( P e. Prime /\ ( Q e. Prime /\ ( Q mod 8 ) = 7 /\ Q = ( ( 2 x. P ) + 1 ) ) ) -> Q || ( ( 2 ^ P ) - 1 ) ) | 
						
							| 11 | 1 2 8 9 10 | syl13anc |  |-  ( ( ( P e. Prime /\ ( P mod 4 ) = 3 ) /\ ( Q = ( ( 2 x. P ) + 1 ) /\ Q e. Prime ) ) -> Q || ( ( 2 ^ P ) - 1 ) ) |