Metamath Proof Explorer


Theorem sgprmdvdsmersenne

Description: If P is a Sophie Germain prime (i.e. Q = ( ( 2 x. P ) + 1 ) is also prime) with P == 3 (mod 4 ), then Q divides the P-th Mersenne number M_P. (Contributed by AV, 20-Aug-2021)

Ref Expression
Assertion sgprmdvdsmersenne PPmod4=3Q=2P+1QQ2P1

Proof

Step Hyp Ref Expression
1 simpll PPmod4=3Q=2P+1QP
2 simprr PPmod4=3Q=2P+1QQ
3 oveq1 Q=2P+1Qmod8=2P+1mod8
4 3 adantr Q=2P+1QQmod8=2P+1mod8
5 prmz PP
6 mod42tp1mod8 PPmod4=32P+1mod8=7
7 5 6 sylan PPmod4=32P+1mod8=7
8 4 7 sylan9eqr PPmod4=3Q=2P+1QQmod8=7
9 simprl PPmod4=3Q=2P+1QQ=2P+1
10 sfprmdvdsmersenne PQQmod8=7Q=2P+1Q2P1
11 1 2 8 9 10 syl13anc PPmod4=3Q=2P+1QQ2P1