Step |
Hyp |
Ref |
Expression |
1 |
|
4nn |
|
2 |
1
|
a1i |
|
3 |
|
3nn0 |
|
4 |
3
|
a1i |
|
5 |
|
3lt4 |
|
6 |
4 5
|
jctir |
|
7 |
|
modremain |
|
8 |
2 6 7
|
mpd3an23 |
|
9 |
|
2cnd |
|
10 |
|
simpr |
|
11 |
|
4z |
|
12 |
11
|
a1i |
|
13 |
10 12
|
zmulcld |
|
14 |
13
|
zcnd |
|
15 |
|
3cn |
|
16 |
15
|
a1i |
|
17 |
9 14 16
|
adddid |
|
18 |
10
|
zcnd |
|
19 |
|
4cn |
|
20 |
19
|
a1i |
|
21 |
9 18 20
|
mul12d |
|
22 |
|
2cn |
|
23 |
|
4t2e8 |
|
24 |
19 22 23
|
mulcomli |
|
25 |
24
|
oveq2i |
|
26 |
21 25
|
eqtrdi |
|
27 |
|
3t2e6 |
|
28 |
15 22 27
|
mulcomli |
|
29 |
28
|
a1i |
|
30 |
26 29
|
oveq12d |
|
31 |
17 30
|
eqtrd |
|
32 |
31
|
oveq1d |
|
33 |
|
id |
|
34 |
|
8nn |
|
35 |
34
|
nnzi |
|
36 |
35
|
a1i |
|
37 |
33 36
|
zmulcld |
|
38 |
37
|
zcnd |
|
39 |
|
6cn |
|
40 |
39
|
a1i |
|
41 |
|
1cnd |
|
42 |
38 40 41
|
addassd |
|
43 |
|
6p1e7 |
|
44 |
43
|
a1i |
|
45 |
44
|
oveq2d |
|
46 |
42 45
|
eqtrd |
|
47 |
46
|
adantl |
|
48 |
32 47
|
eqtrd |
|
49 |
48
|
oveq1d |
|
50 |
|
nnrp |
|
51 |
34 50
|
mp1i |
|
52 |
|
0xr |
|
53 |
52
|
a1i |
|
54 |
|
8re |
|
55 |
54
|
rexri |
|
56 |
55
|
a1i |
|
57 |
|
7re |
|
58 |
57
|
rexri |
|
59 |
58
|
a1i |
|
60 |
|
0re |
|
61 |
|
7pos |
|
62 |
60 57 61
|
ltleii |
|
63 |
62
|
a1i |
|
64 |
|
7lt8 |
|
65 |
64
|
a1i |
|
66 |
53 56 59 63 65
|
elicod |
|
67 |
|
muladdmodid |
|
68 |
51 66 67
|
mpd3an23 |
|
69 |
68
|
adantl |
|
70 |
49 69
|
eqtrd |
|
71 |
|
oveq2 |
|
72 |
71
|
oveq1d |
|
73 |
72
|
oveq1d |
|
74 |
73
|
eqeq1d |
|
75 |
70 74
|
syl5ibcom |
|
76 |
75
|
rexlimdva |
|
77 |
8 76
|
sylbid |
|
78 |
77
|
imp |
|