Metamath Proof Explorer


Theorem mod42tp1mod8

Description: If a number is 3 modulo 4 , twice the number plus 1 is 7 modulo 8 . (Contributed by AV, 19-Aug-2021)

Ref Expression
Assertion mod42tp1mod8 NNmod4=32 N+1mod8=7

Proof

Step Hyp Ref Expression
1 4nn 4
2 1 a1i N4
3 3nn0 30
4 3 a1i N30
5 3lt4 3<4
6 4 5 jctir N303<4
7 modremain N4303<4Nmod4=3zz4+3=N
8 2 6 7 mpd3an23 NNmod4=3zz4+3=N
9 2cnd Nz2
10 simpr Nzz
11 4z 4
12 11 a1i Nz4
13 10 12 zmulcld Nzz4
14 13 zcnd Nzz4
15 3cn 3
16 15 a1i Nz3
17 9 14 16 adddid Nz2z4+3=2z4+23
18 10 zcnd Nzz
19 4cn 4
20 19 a1i Nz4
21 9 18 20 mul12d Nz2z4=z24
22 2cn 2
23 4t2e8 42=8
24 19 22 23 mulcomli 24=8
25 24 oveq2i z24=z8
26 21 25 eqtrdi Nz2z4=z8
27 3t2e6 32=6
28 15 22 27 mulcomli 23=6
29 28 a1i Nz23=6
30 26 29 oveq12d Nz2z4+23=z8+6
31 17 30 eqtrd Nz2z4+3=z8+6
32 31 oveq1d Nz2z4+3+1=z8+6+1
33 id zz
34 8nn 8
35 34 nnzi 8
36 35 a1i z8
37 33 36 zmulcld zz8
38 37 zcnd zz8
39 6cn 6
40 39 a1i z6
41 1cnd z1
42 38 40 41 addassd zz8+6+1=z8+6+1
43 6p1e7 6+1=7
44 43 a1i z6+1=7
45 44 oveq2d zz8+6+1=z8+7
46 42 45 eqtrd zz8+6+1=z8+7
47 46 adantl Nzz8+6+1=z8+7
48 32 47 eqtrd Nz2z4+3+1=z8+7
49 48 oveq1d Nz2z4+3+1mod8=z8+7mod8
50 nnrp 88+
51 34 50 mp1i z8+
52 0xr 0*
53 52 a1i z0*
54 8re 8
55 54 rexri 8*
56 55 a1i z8*
57 7re 7
58 57 rexri 7*
59 58 a1i z7*
60 0re 0
61 7pos 0<7
62 60 57 61 ltleii 07
63 62 a1i z07
64 7lt8 7<8
65 64 a1i z7<8
66 53 56 59 63 65 elicod z708
67 muladdmodid z8+708z8+7mod8=7
68 51 66 67 mpd3an23 zz8+7mod8=7
69 68 adantl Nzz8+7mod8=7
70 49 69 eqtrd Nz2z4+3+1mod8=7
71 oveq2 z4+3=N2z4+3=2 N
72 71 oveq1d z4+3=N2z4+3+1=2 N+1
73 72 oveq1d z4+3=N2z4+3+1mod8=2 N+1mod8
74 73 eqeq1d z4+3=N2z4+3+1mod8=72 N+1mod8=7
75 70 74 syl5ibcom Nzz4+3=N2 N+1mod8=7
76 75 rexlimdva Nzz4+3=N2 N+1mod8=7
77 8 76 sylbid NNmod4=32 N+1mod8=7
78 77 imp NNmod4=32 N+1mod8=7