Description: If a number is 3 modulo 4 , twice the number plus 1 is 7 modulo 8 . (Contributed by AV, 19-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mod42tp1mod8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn | |
|
2 | 1 | a1i | |
3 | 3nn0 | |
|
4 | 3 | a1i | |
5 | 3lt4 | |
|
6 | 4 5 | jctir | |
7 | modremain | |
|
8 | 2 6 7 | mpd3an23 | |
9 | 2cnd | |
|
10 | simpr | |
|
11 | 4z | |
|
12 | 11 | a1i | |
13 | 10 12 | zmulcld | |
14 | 13 | zcnd | |
15 | 3cn | |
|
16 | 15 | a1i | |
17 | 9 14 16 | adddid | |
18 | 10 | zcnd | |
19 | 4cn | |
|
20 | 19 | a1i | |
21 | 9 18 20 | mul12d | |
22 | 2cn | |
|
23 | 4t2e8 | |
|
24 | 19 22 23 | mulcomli | |
25 | 24 | oveq2i | |
26 | 21 25 | eqtrdi | |
27 | 3t2e6 | |
|
28 | 15 22 27 | mulcomli | |
29 | 28 | a1i | |
30 | 26 29 | oveq12d | |
31 | 17 30 | eqtrd | |
32 | 31 | oveq1d | |
33 | id | |
|
34 | 8nn | |
|
35 | 34 | nnzi | |
36 | 35 | a1i | |
37 | 33 36 | zmulcld | |
38 | 37 | zcnd | |
39 | 6cn | |
|
40 | 39 | a1i | |
41 | 1cnd | |
|
42 | 38 40 41 | addassd | |
43 | 6p1e7 | |
|
44 | 43 | a1i | |
45 | 44 | oveq2d | |
46 | 42 45 | eqtrd | |
47 | 46 | adantl | |
48 | 32 47 | eqtrd | |
49 | 48 | oveq1d | |
50 | nnrp | |
|
51 | 34 50 | mp1i | |
52 | 0xr | |
|
53 | 52 | a1i | |
54 | 8re | |
|
55 | 54 | rexri | |
56 | 55 | a1i | |
57 | 7re | |
|
58 | 57 | rexri | |
59 | 58 | a1i | |
60 | 0re | |
|
61 | 7pos | |
|
62 | 60 57 61 | ltleii | |
63 | 62 | a1i | |
64 | 7lt8 | |
|
65 | 64 | a1i | |
66 | 53 56 59 63 65 | elicod | |
67 | muladdmodid | |
|
68 | 51 66 67 | mpd3an23 | |
69 | 68 | adantl | |
70 | 49 69 | eqtrd | |
71 | oveq2 | |
|
72 | 71 | oveq1d | |
73 | 72 | oveq1d | |
74 | 73 | eqeq1d | |
75 | 70 74 | syl5ibcom | |
76 | 75 | rexlimdva | |
77 | 8 76 | sylbid | |
78 | 77 | imp | |