Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
|
2 |
|
divalgmodcl |
|
3 |
2
|
3adant3r |
|
4 |
|
ibar |
|
5 |
4
|
adantl |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
nnz |
|
8 |
7
|
3ad2ant2 |
|
9 |
|
simp1 |
|
10 |
|
nn0z |
|
11 |
10
|
adantr |
|
12 |
11
|
3ad2ant3 |
|
13 |
9 12
|
zsubcld |
|
14 |
|
divides |
|
15 |
8 13 14
|
syl2anc |
|
16 |
|
eqcom |
|
17 |
|
zcn |
|
18 |
17
|
3ad2ant1 |
|
19 |
18
|
adantr |
|
20 |
|
nn0cn |
|
21 |
20
|
adantr |
|
22 |
21
|
3ad2ant3 |
|
23 |
22
|
adantr |
|
24 |
|
simpr |
|
25 |
8
|
adantr |
|
26 |
24 25
|
zmulcld |
|
27 |
26
|
zcnd |
|
28 |
19 23 27
|
subadd2d |
|
29 |
16 28
|
syl5bb |
|
30 |
29
|
rexbidva |
|
31 |
15 30
|
bitrd |
|
32 |
3 6 31
|
3bitr2d |
|
33 |
1 32
|
syl5bb |
|