| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqcom |
|
| 2 |
|
divalgmodcl |
|
| 3 |
2
|
3adant3r |
|
| 4 |
|
ibar |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
nnz |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
|
simp1 |
|
| 10 |
|
nn0z |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
3ad2ant3 |
|
| 13 |
9 12
|
zsubcld |
|
| 14 |
|
divides |
|
| 15 |
8 13 14
|
syl2anc |
|
| 16 |
|
eqcom |
|
| 17 |
|
zcn |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
18
|
adantr |
|
| 20 |
|
nn0cn |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
3ad2ant3 |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
8
|
adantr |
|
| 26 |
24 25
|
zmulcld |
|
| 27 |
26
|
zcnd |
|
| 28 |
19 23 27
|
subadd2d |
|
| 29 |
16 28
|
bitrid |
|
| 30 |
29
|
rexbidva |
|
| 31 |
15 30
|
bitrd |
|
| 32 |
3 6 31
|
3bitr2d |
|
| 33 |
1 32
|
bitrid |
|