Metamath Proof Explorer


Theorem divalgmodcl

Description: The result of the mod operator satisfies the requirements for the remainder R in the division algorithm for a positive divisor. Variant of divalgmod . (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by AV, 21-Aug-2021)

Ref Expression
Assertion divalgmodcl NDR0R=NmodDR<DDNR

Proof

Step Hyp Ref Expression
1 divalgmod NDR=NmodDR0R<DDNR
2 1 baibd NDR0R=NmodDR<DDNR
3 2 3impa NDR0R=NmodDR<DDNR