Description: The result of the mod operator satisfies the requirements for the remainder R in the division algorithm for a positive divisor (compare divalg2 and divalgb ). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by AV, 21-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | divalgmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex | |
|
2 | 1 | snid | |
3 | eleq1 | |
|
4 | 2 3 | mpbiri | |
5 | elsni | |
|
6 | 4 5 | impbii | |
7 | zre | |
|
8 | nnrp | |
|
9 | modlt | |
|
10 | 7 8 9 | syl2an | |
11 | nnre | |
|
12 | nnne0 | |
|
13 | redivcl | |
|
14 | 7 11 12 13 | syl3an | |
15 | 14 | 3anidm23 | |
16 | 15 | flcld | |
17 | nnz | |
|
18 | 17 | adantl | |
19 | zmodcl | |
|
20 | 19 | nn0zd | |
21 | zsubcl | |
|
22 | 20 21 | syldan | |
23 | nncn | |
|
24 | 23 | adantl | |
25 | 16 | zcnd | |
26 | 24 25 | mulcomd | |
27 | modval | |
|
28 | 7 8 27 | syl2an | |
29 | 19 | nn0cnd | |
30 | zmulcl | |
|
31 | 17 16 30 | syl2an2 | |
32 | 31 | zcnd | |
33 | zcn | |
|
34 | 33 | adantr | |
35 | 29 32 34 | subexsub | |
36 | 28 35 | mpbid | |
37 | 26 36 | eqtr3d | |
38 | dvds0lem | |
|
39 | 16 18 22 37 38 | syl31anc | |
40 | divalg2 | |
|
41 | breq1 | |
|
42 | oveq2 | |
|
43 | 42 | breq2d | |
44 | 41 43 | anbi12d | |
45 | 44 | riota2 | |
46 | 19 40 45 | syl2anc | |
47 | 10 39 46 | mpbi2and | |
48 | 47 | eqcomd | |
49 | 48 | sneqd | |
50 | snriota | |
|
51 | 40 50 | syl | |
52 | 49 51 | eqtr4d | |
53 | 52 | eleq2d | |
54 | 6 53 | bitrid | |
55 | breq1 | |
|
56 | oveq2 | |
|
57 | 56 | breq2d | |
58 | 55 57 | anbi12d | |
59 | 58 | elrab | |
60 | 54 59 | bitrdi | |