Metamath Proof Explorer


Theorem zmodcl

Description: Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008)

Ref Expression
Assertion zmodcl ABAmodB0

Proof

Step Hyp Ref Expression
1 zre AA
2 nnrp BB+
3 modval AB+AmodB=ABAB
4 1 2 3 syl2an ABAmodB=ABAB
5 nnz BB
6 5 adantl ABB
7 nndivre ABAB
8 1 7 sylan ABAB
9 8 flcld ABAB
10 6 9 zmulcld ABBAB
11 zsubcl ABABABAB
12 10 11 syldan ABABAB
13 4 12 eqeltrd ABAmodB
14 modge0 AB+0AmodB
15 1 2 14 syl2an AB0AmodB
16 elnn0z AmodB0AmodB0AmodB
17 13 15 16 sylanbrc ABAmodB0