| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
simp2 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> M e. NN ) |
| 3 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ M e. NN ) -> 2 || ( 2 ^ M ) ) |
| 4 |
1 2 3
|
sylancr |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( 2 ^ M ) ) |
| 5 |
|
oveq1 |
|- ( P = 2 -> ( P ^ M ) = ( 2 ^ M ) ) |
| 6 |
5
|
breq2d |
|- ( P = 2 -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) ) |
| 8 |
4 7
|
mpbird |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( P ^ M ) ) |
| 9 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) ) |
| 10 |
1 9
|
mpan |
|- ( N e. NN -> 2 || ( 2 ^ N ) ) |
| 11 |
10
|
notnotd |
|- ( N e. NN -> -. -. 2 || ( 2 ^ N ) ) |
| 12 |
|
2nn |
|- 2 e. NN |
| 13 |
12
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
| 14 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 15 |
13 14
|
nnexpcld |
|- ( N e. NN -> ( 2 ^ N ) e. NN ) |
| 16 |
15
|
nnzd |
|- ( N e. NN -> ( 2 ^ N ) e. ZZ ) |
| 17 |
|
oddm1even |
|- ( ( 2 ^ N ) e. ZZ -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) ) |
| 18 |
16 17
|
syl |
|- ( N e. NN -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) ) |
| 19 |
11 18
|
mtbid |
|- ( N e. NN -> -. 2 || ( ( 2 ^ N ) - 1 ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> -. 2 || ( ( 2 ^ N ) - 1 ) ) |
| 21 |
|
nbrne1 |
|- ( ( 2 || ( P ^ M ) /\ -. 2 || ( ( 2 ^ N ) - 1 ) ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) ) |
| 22 |
8 20 21
|
syl2anc |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) ) |
| 23 |
22
|
necomd |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) ) |