| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | simp2 |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> M e. NN ) | 
						
							| 3 |  | iddvdsexp |  |-  ( ( 2 e. ZZ /\ M e. NN ) -> 2 || ( 2 ^ M ) ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( 2 ^ M ) ) | 
						
							| 5 |  | oveq1 |  |-  ( P = 2 -> ( P ^ M ) = ( 2 ^ M ) ) | 
						
							| 6 | 5 | breq2d |  |-  ( P = 2 -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) ) | 
						
							| 8 | 4 7 | mpbird |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( P ^ M ) ) | 
						
							| 9 |  | iddvdsexp |  |-  ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) ) | 
						
							| 10 | 1 9 | mpan |  |-  ( N e. NN -> 2 || ( 2 ^ N ) ) | 
						
							| 11 | 10 | notnotd |  |-  ( N e. NN -> -. -. 2 || ( 2 ^ N ) ) | 
						
							| 12 |  | 2nn |  |-  2 e. NN | 
						
							| 13 | 12 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 14 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 15 | 13 14 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ N ) e. NN ) | 
						
							| 16 | 15 | nnzd |  |-  ( N e. NN -> ( 2 ^ N ) e. ZZ ) | 
						
							| 17 |  | oddm1even |  |-  ( ( 2 ^ N ) e. ZZ -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( N e. NN -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) ) | 
						
							| 19 | 11 18 | mtbid |  |-  ( N e. NN -> -. 2 || ( ( 2 ^ N ) - 1 ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> -. 2 || ( ( 2 ^ N ) - 1 ) ) | 
						
							| 21 |  | nbrne1 |  |-  ( ( 2 || ( P ^ M ) /\ -. 2 || ( ( 2 ^ N ) - 1 ) ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) ) | 
						
							| 22 | 8 20 21 | syl2anc |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) ) | 
						
							| 23 | 22 | necomd |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) ) |