Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
simp2 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> M e. NN ) |
3 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ M e. NN ) -> 2 || ( 2 ^ M ) ) |
4 |
1 2 3
|
sylancr |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( 2 ^ M ) ) |
5 |
|
oveq1 |
|- ( P = 2 -> ( P ^ M ) = ( 2 ^ M ) ) |
6 |
5
|
breq2d |
|- ( P = 2 -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) ) |
8 |
4 7
|
mpbird |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( P ^ M ) ) |
9 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) ) |
10 |
1 9
|
mpan |
|- ( N e. NN -> 2 || ( 2 ^ N ) ) |
11 |
10
|
notnotd |
|- ( N e. NN -> -. -. 2 || ( 2 ^ N ) ) |
12 |
|
2nn |
|- 2 e. NN |
13 |
12
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
14 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
15 |
13 14
|
nnexpcld |
|- ( N e. NN -> ( 2 ^ N ) e. NN ) |
16 |
15
|
nnzd |
|- ( N e. NN -> ( 2 ^ N ) e. ZZ ) |
17 |
|
oddm1even |
|- ( ( 2 ^ N ) e. ZZ -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) ) |
18 |
16 17
|
syl |
|- ( N e. NN -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) ) |
19 |
11 18
|
mtbid |
|- ( N e. NN -> -. 2 || ( ( 2 ^ N ) - 1 ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> -. 2 || ( ( 2 ^ N ) - 1 ) ) |
21 |
|
nbrne1 |
|- ( ( 2 || ( P ^ M ) /\ -. 2 || ( ( 2 ^ N ) - 1 ) ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) ) |
22 |
8 20 21
|
syl2anc |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) ) |
23 |
22
|
necomd |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) ) |