Metamath Proof Explorer


Theorem lighneallem1

Description: Lemma 1 for lighneal . (Contributed by AV, 11-Aug-2021)

Ref Expression
Assertion lighneallem1
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 simp2
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> M e. NN )
3 iddvdsexp
 |-  ( ( 2 e. ZZ /\ M e. NN ) -> 2 || ( 2 ^ M ) )
4 1 2 3 sylancr
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( 2 ^ M ) )
5 oveq1
 |-  ( P = 2 -> ( P ^ M ) = ( 2 ^ M ) )
6 5 breq2d
 |-  ( P = 2 -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) )
7 6 3ad2ant1
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( 2 || ( P ^ M ) <-> 2 || ( 2 ^ M ) ) )
8 4 7 mpbird
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> 2 || ( P ^ M ) )
9 iddvdsexp
 |-  ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) )
10 1 9 mpan
 |-  ( N e. NN -> 2 || ( 2 ^ N ) )
11 10 notnotd
 |-  ( N e. NN -> -. -. 2 || ( 2 ^ N ) )
12 2nn
 |-  2 e. NN
13 12 a1i
 |-  ( N e. NN -> 2 e. NN )
14 nnnn0
 |-  ( N e. NN -> N e. NN0 )
15 13 14 nnexpcld
 |-  ( N e. NN -> ( 2 ^ N ) e. NN )
16 15 nnzd
 |-  ( N e. NN -> ( 2 ^ N ) e. ZZ )
17 oddm1even
 |-  ( ( 2 ^ N ) e. ZZ -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) )
18 16 17 syl
 |-  ( N e. NN -> ( -. 2 || ( 2 ^ N ) <-> 2 || ( ( 2 ^ N ) - 1 ) ) )
19 11 18 mtbid
 |-  ( N e. NN -> -. 2 || ( ( 2 ^ N ) - 1 ) )
20 19 3ad2ant3
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> -. 2 || ( ( 2 ^ N ) - 1 ) )
21 nbrne1
 |-  ( ( 2 || ( P ^ M ) /\ -. 2 || ( ( 2 ^ N ) - 1 ) ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) )
22 8 20 21 syl2anc
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( P ^ M ) =/= ( ( 2 ^ N ) - 1 ) )
23 22 necomd
 |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) )