| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evennn2n |  |-  ( N e. NN -> ( 2 || N <-> E. k e. NN ( 2 x. k ) = N ) ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 || N <-> E. k e. NN ( 2 x. k ) = N ) ) | 
						
							| 3 |  | oveq2 |  |-  ( N = ( 2 x. k ) -> ( 2 ^ N ) = ( 2 ^ ( 2 x. k ) ) ) | 
						
							| 4 | 3 | eqcoms |  |-  ( ( 2 x. k ) = N -> ( 2 ^ N ) = ( 2 ^ ( 2 x. k ) ) ) | 
						
							| 5 |  | 2cnd |  |-  ( k e. NN -> 2 e. CC ) | 
						
							| 6 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 7 | 5 6 | mulcomd |  |-  ( k e. NN -> ( 2 x. k ) = ( k x. 2 ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( k e. NN -> ( 2 ^ ( 2 x. k ) ) = ( 2 ^ ( k x. 2 ) ) ) | 
						
							| 9 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 10 | 9 | a1i |  |-  ( k e. NN -> 2 e. NN0 ) | 
						
							| 11 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 12 | 5 10 11 | expmuld |  |-  ( k e. NN -> ( 2 ^ ( k x. 2 ) ) = ( ( 2 ^ k ) ^ 2 ) ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( k e. NN -> ( 2 ^ ( 2 x. k ) ) = ( ( 2 ^ k ) ^ 2 ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) -> ( 2 ^ ( 2 x. k ) ) = ( ( 2 ^ k ) ^ 2 ) ) | 
						
							| 15 | 4 14 | sylan9eqr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) /\ ( 2 x. k ) = N ) -> ( 2 ^ N ) = ( ( 2 ^ k ) ^ 2 ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) /\ ( 2 x. k ) = N ) -> ( ( 2 ^ N ) - 1 ) = ( ( ( 2 ^ k ) ^ 2 ) - 1 ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) /\ ( 2 x. k ) = N ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) ) ) | 
						
							| 18 |  | elnn1uz2 |  |-  ( k e. NN <-> ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) ) | 
						
							| 19 |  | oveq2 |  |-  ( k = 1 -> ( 2 ^ k ) = ( 2 ^ 1 ) ) | 
						
							| 20 |  | 2cn |  |-  2 e. CC | 
						
							| 21 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 23 | 19 22 | eqtrdi |  |-  ( k = 1 -> ( 2 ^ k ) = 2 ) | 
						
							| 24 | 23 | oveq1d |  |-  ( k = 1 -> ( ( 2 ^ k ) ^ 2 ) = ( 2 ^ 2 ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( k = 1 -> ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( ( 2 ^ 2 ) - 1 ) ) | 
						
							| 26 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 27 | 26 | oveq1i |  |-  ( ( 2 ^ 2 ) - 1 ) = ( 4 - 1 ) | 
						
							| 28 |  | 4m1e3 |  |-  ( 4 - 1 ) = 3 | 
						
							| 29 | 27 28 | eqtri |  |-  ( ( 2 ^ 2 ) - 1 ) = 3 | 
						
							| 30 | 25 29 | eqtrdi |  |-  ( k = 1 -> ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = 3 ) | 
						
							| 31 | 30 | eqeq1d |  |-  ( k = 1 -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) <-> 3 = ( P ^ M ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( k = 1 /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) <-> 3 = ( P ^ M ) ) ) | 
						
							| 33 |  | eqcom |  |-  ( 3 = ( P ^ M ) <-> ( P ^ M ) = 3 ) | 
						
							| 34 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 35 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 36 |  | nnre |  |-  ( P e. NN -> P e. RR ) | 
						
							| 37 | 34 35 36 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. RR ) | 
						
							| 38 | 37 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. RR ) | 
						
							| 39 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 40 | 39 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. NN0 ) | 
						
							| 41 | 38 40 | reexpcld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P ^ M ) e. RR ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( P ^ M ) = 3 ) -> ( P ^ M ) e. RR ) | 
						
							| 43 |  | simpr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( P ^ M ) = 3 ) -> ( P ^ M ) = 3 ) | 
						
							| 44 | 42 43 | eqled |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( P ^ M ) = 3 ) -> ( P ^ M ) <_ 3 ) | 
						
							| 45 | 44 | ex |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( P ^ M ) = 3 -> ( P ^ M ) <_ 3 ) ) | 
						
							| 46 | 33 45 | biimtrid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 3 = ( P ^ M ) -> ( P ^ M ) <_ 3 ) ) | 
						
							| 47 | 35 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 48 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 49 | 47 48 | jca |  |-  ( P e. Prime -> ( P e. RR /\ 1 < P ) ) | 
						
							| 50 | 34 49 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. RR /\ 1 < P ) ) | 
						
							| 51 | 50 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P e. RR /\ 1 < P ) ) | 
						
							| 52 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. ZZ ) | 
						
							| 54 |  | 3rp |  |-  3 e. RR+ | 
						
							| 55 | 54 | a1i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> 3 e. RR+ ) | 
						
							| 56 |  | efexple |  |-  ( ( ( P e. RR /\ 1 < P ) /\ M e. ZZ /\ 3 e. RR+ ) -> ( ( P ^ M ) <_ 3 <-> M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) ) ) | 
						
							| 57 | 51 53 55 56 | syl3anc |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( P ^ M ) <_ 3 <-> M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) ) ) | 
						
							| 58 |  | oddprmge3 |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) | 
						
							| 59 |  | eluzle |  |-  ( P e. ( ZZ>= ` 3 ) -> 3 <_ P ) | 
						
							| 60 | 58 59 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> 3 <_ P ) | 
						
							| 61 | 54 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 3 e. RR+ ) | 
						
							| 62 |  | nnrp |  |-  ( P e. NN -> P e. RR+ ) | 
						
							| 63 | 34 35 62 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. RR+ ) | 
						
							| 64 | 61 63 | logled |  |-  ( P e. ( Prime \ { 2 } ) -> ( 3 <_ P <-> ( log ` 3 ) <_ ( log ` P ) ) ) | 
						
							| 65 | 60 64 | mpbid |  |-  ( P e. ( Prime \ { 2 } ) -> ( log ` 3 ) <_ ( log ` P ) ) | 
						
							| 66 | 65 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( log ` 3 ) <_ ( log ` P ) ) | 
						
							| 67 |  | relogcl |  |-  ( 3 e. RR+ -> ( log ` 3 ) e. RR ) | 
						
							| 68 | 54 67 | ax-mp |  |-  ( log ` 3 ) e. RR | 
						
							| 69 |  | rplogcl |  |-  ( ( P e. RR /\ 1 < P ) -> ( log ` P ) e. RR+ ) | 
						
							| 70 | 34 49 69 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( log ` P ) e. RR+ ) | 
						
							| 71 | 70 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( log ` P ) e. RR+ ) | 
						
							| 72 |  | divle1le |  |-  ( ( ( log ` 3 ) e. RR /\ ( log ` P ) e. RR+ ) -> ( ( ( log ` 3 ) / ( log ` P ) ) <_ 1 <-> ( log ` 3 ) <_ ( log ` P ) ) ) | 
						
							| 73 | 68 71 72 | sylancr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( ( log ` 3 ) / ( log ` P ) ) <_ 1 <-> ( log ` 3 ) <_ ( log ` P ) ) ) | 
						
							| 74 | 66 73 | mpbird |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( log ` 3 ) / ( log ` P ) ) <_ 1 ) | 
						
							| 75 |  | fldivle |  |-  ( ( ( log ` 3 ) e. RR /\ ( log ` P ) e. RR+ ) -> ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) <_ ( ( log ` 3 ) / ( log ` P ) ) ) | 
						
							| 76 | 68 71 75 | sylancr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) <_ ( ( log ` 3 ) / ( log ` P ) ) ) | 
						
							| 77 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 78 | 77 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. RR ) | 
						
							| 79 | 68 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> ( log ` 3 ) e. RR ) | 
						
							| 80 | 62 | relogcld |  |-  ( P e. NN -> ( log ` P ) e. RR ) | 
						
							| 81 | 34 35 80 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( log ` P ) e. RR ) | 
						
							| 82 | 35 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 83 |  | 1red |  |-  ( P e. Prime -> 1 e. RR ) | 
						
							| 84 | 83 48 | gtned |  |-  ( P e. Prime -> P =/= 1 ) | 
						
							| 85 | 82 84 | jca |  |-  ( P e. Prime -> ( P e. RR+ /\ P =/= 1 ) ) | 
						
							| 86 |  | logne0 |  |-  ( ( P e. RR+ /\ P =/= 1 ) -> ( log ` P ) =/= 0 ) | 
						
							| 87 | 34 85 86 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( log ` P ) =/= 0 ) | 
						
							| 88 | 79 81 87 | redivcld |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( log ` 3 ) / ( log ` P ) ) e. RR ) | 
						
							| 89 | 88 | flcld |  |-  ( P e. ( Prime \ { 2 } ) -> ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) e. ZZ ) | 
						
							| 90 | 89 | zred |  |-  ( P e. ( Prime \ { 2 } ) -> ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) e. RR ) | 
						
							| 91 | 90 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) e. RR ) | 
						
							| 92 | 88 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( log ` 3 ) / ( log ` P ) ) e. RR ) | 
						
							| 93 |  | letr |  |-  ( ( M e. RR /\ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) e. RR /\ ( ( log ` 3 ) / ( log ` P ) ) e. RR ) -> ( ( M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) /\ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) <_ ( ( log ` 3 ) / ( log ` P ) ) ) -> M <_ ( ( log ` 3 ) / ( log ` P ) ) ) ) | 
						
							| 94 | 78 91 92 93 | syl3anc |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) /\ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) <_ ( ( log ` 3 ) / ( log ` P ) ) ) -> M <_ ( ( log ` 3 ) / ( log ` P ) ) ) ) | 
						
							| 95 |  | 1red |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> 1 e. RR ) | 
						
							| 96 |  | letr |  |-  ( ( M e. RR /\ ( ( log ` 3 ) / ( log ` P ) ) e. RR /\ 1 e. RR ) -> ( ( M <_ ( ( log ` 3 ) / ( log ` P ) ) /\ ( ( log ` 3 ) / ( log ` P ) ) <_ 1 ) -> M <_ 1 ) ) | 
						
							| 97 | 78 92 95 96 | syl3anc |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( M <_ ( ( log ` 3 ) / ( log ` P ) ) /\ ( ( log ` 3 ) / ( log ` P ) ) <_ 1 ) -> M <_ 1 ) ) | 
						
							| 98 |  | nnge1 |  |-  ( M e. NN -> 1 <_ M ) | 
						
							| 99 |  | eqcom |  |-  ( M = 1 <-> 1 = M ) | 
						
							| 100 |  | 1red |  |-  ( M e. NN -> 1 e. RR ) | 
						
							| 101 | 100 77 | letri3d |  |-  ( M e. NN -> ( 1 = M <-> ( 1 <_ M /\ M <_ 1 ) ) ) | 
						
							| 102 | 99 101 | bitr2id |  |-  ( M e. NN -> ( ( 1 <_ M /\ M <_ 1 ) <-> M = 1 ) ) | 
						
							| 103 | 102 | biimpd |  |-  ( M e. NN -> ( ( 1 <_ M /\ M <_ 1 ) -> M = 1 ) ) | 
						
							| 104 | 98 103 | mpand |  |-  ( M e. NN -> ( M <_ 1 -> M = 1 ) ) | 
						
							| 105 | 104 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( M <_ 1 -> M = 1 ) ) | 
						
							| 106 | 97 105 | syld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( M <_ ( ( log ` 3 ) / ( log ` P ) ) /\ ( ( log ` 3 ) / ( log ` P ) ) <_ 1 ) -> M = 1 ) ) | 
						
							| 107 | 106 | expd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( M <_ ( ( log ` 3 ) / ( log ` P ) ) -> ( ( ( log ` 3 ) / ( log ` P ) ) <_ 1 -> M = 1 ) ) ) | 
						
							| 108 | 94 107 | syld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) /\ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) <_ ( ( log ` 3 ) / ( log ` P ) ) ) -> ( ( ( log ` 3 ) / ( log ` P ) ) <_ 1 -> M = 1 ) ) ) | 
						
							| 109 | 76 108 | mpan2d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) -> ( ( ( log ` 3 ) / ( log ` P ) ) <_ 1 -> M = 1 ) ) ) | 
						
							| 110 | 74 109 | mpid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( M <_ ( |_ ` ( ( log ` 3 ) / ( log ` P ) ) ) -> M = 1 ) ) | 
						
							| 111 | 57 110 | sylbid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( P ^ M ) <_ 3 -> M = 1 ) ) | 
						
							| 112 | 46 111 | syld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 3 = ( P ^ M ) -> M = 1 ) ) | 
						
							| 113 | 112 | adantl |  |-  ( ( k = 1 /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( 3 = ( P ^ M ) -> M = 1 ) ) | 
						
							| 114 | 32 113 | sylbid |  |-  ( ( k = 1 /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 115 | 114 | ex |  |-  ( k = 1 -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 116 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 117 | 116 | eqcomi |  |-  1 = ( 1 ^ 2 ) | 
						
							| 118 | 117 | oveq2i |  |-  ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) | 
						
							| 119 | 118 | eqeq1i |  |-  ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) <-> ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) = ( P ^ M ) ) | 
						
							| 120 |  | eqcom |  |-  ( ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) = ( P ^ M ) <-> ( P ^ M ) = ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) ) | 
						
							| 121 | 9 | a1i |  |-  ( k e. ( ZZ>= ` 2 ) -> 2 e. NN0 ) | 
						
							| 122 |  | eluzge2nn0 |  |-  ( k e. ( ZZ>= ` 2 ) -> k e. NN0 ) | 
						
							| 123 | 121 122 | nn0expcld |  |-  ( k e. ( ZZ>= ` 2 ) -> ( 2 ^ k ) e. NN0 ) | 
						
							| 124 | 123 | adantr |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( 2 ^ k ) e. NN0 ) | 
						
							| 125 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 126 | 125 | a1i |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> 1 e. NN0 ) | 
						
							| 127 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 128 | 22 | eqcomi |  |-  2 = ( 2 ^ 1 ) | 
						
							| 129 | 127 128 | eqtri |  |-  ( 1 + 1 ) = ( 2 ^ 1 ) | 
						
							| 130 |  | eluz2gt1 |  |-  ( k e. ( ZZ>= ` 2 ) -> 1 < k ) | 
						
							| 131 |  | 2re |  |-  2 e. RR | 
						
							| 132 | 131 | a1i |  |-  ( k e. ( ZZ>= ` 2 ) -> 2 e. RR ) | 
						
							| 133 |  | 1zzd |  |-  ( k e. ( ZZ>= ` 2 ) -> 1 e. ZZ ) | 
						
							| 134 |  | eluzelz |  |-  ( k e. ( ZZ>= ` 2 ) -> k e. ZZ ) | 
						
							| 135 |  | 1lt2 |  |-  1 < 2 | 
						
							| 136 | 135 | a1i |  |-  ( k e. ( ZZ>= ` 2 ) -> 1 < 2 ) | 
						
							| 137 | 132 133 134 136 | ltexp2d |  |-  ( k e. ( ZZ>= ` 2 ) -> ( 1 < k <-> ( 2 ^ 1 ) < ( 2 ^ k ) ) ) | 
						
							| 138 | 130 137 | mpbid |  |-  ( k e. ( ZZ>= ` 2 ) -> ( 2 ^ 1 ) < ( 2 ^ k ) ) | 
						
							| 139 | 129 138 | eqbrtrid |  |-  ( k e. ( ZZ>= ` 2 ) -> ( 1 + 1 ) < ( 2 ^ k ) ) | 
						
							| 140 | 139 | adantr |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( 1 + 1 ) < ( 2 ^ k ) ) | 
						
							| 141 | 34 39 | anim12i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( P e. Prime /\ M e. NN0 ) ) | 
						
							| 142 | 141 | 3adant3 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P e. Prime /\ M e. NN0 ) ) | 
						
							| 143 | 142 | adantl |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( P e. Prime /\ M e. NN0 ) ) | 
						
							| 144 |  | difsqpwdvds |  |-  ( ( ( ( 2 ^ k ) e. NN0 /\ 1 e. NN0 /\ ( 1 + 1 ) < ( 2 ^ k ) ) /\ ( P e. Prime /\ M e. NN0 ) ) -> ( ( P ^ M ) = ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) -> P || ( 2 x. 1 ) ) ) | 
						
							| 145 | 124 126 140 143 144 | syl31anc |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) -> P || ( 2 x. 1 ) ) ) | 
						
							| 146 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 147 | 146 | breq2i |  |-  ( P || ( 2 x. 1 ) <-> P || 2 ) | 
						
							| 148 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 149 | 34 148 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 150 |  | 2prm |  |-  2 e. Prime | 
						
							| 151 |  | dvdsprm |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ 2 e. Prime ) -> ( P || 2 <-> P = 2 ) ) | 
						
							| 152 | 149 150 151 | sylancl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P || 2 <-> P = 2 ) ) | 
						
							| 153 | 147 152 | bitrid |  |-  ( P e. ( Prime \ { 2 } ) -> ( P || ( 2 x. 1 ) <-> P = 2 ) ) | 
						
							| 154 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 155 |  | eqneqall |  |-  ( P = 2 -> ( P =/= 2 -> M = 1 ) ) | 
						
							| 156 | 155 | com12 |  |-  ( P =/= 2 -> ( P = 2 -> M = 1 ) ) | 
						
							| 157 | 154 156 | simplbiim |  |-  ( P e. ( Prime \ { 2 } ) -> ( P = 2 -> M = 1 ) ) | 
						
							| 158 | 153 157 | sylbid |  |-  ( P e. ( Prime \ { 2 } ) -> ( P || ( 2 x. 1 ) -> M = 1 ) ) | 
						
							| 159 | 158 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P || ( 2 x. 1 ) -> M = 1 ) ) | 
						
							| 160 | 159 | adantl |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( P || ( 2 x. 1 ) -> M = 1 ) ) | 
						
							| 161 | 145 160 | syld |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) -> M = 1 ) ) | 
						
							| 162 | 120 161 | biimtrid |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - ( 1 ^ 2 ) ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 163 | 119 162 | biimtrid |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 164 | 163 | ex |  |-  ( k e. ( ZZ>= ` 2 ) -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 165 | 115 164 | jaoi |  |-  ( ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 166 | 18 165 | sylbi |  |-  ( k e. NN -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 167 | 166 | impcom |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) /\ ( 2 x. k ) = N ) -> ( ( ( ( 2 ^ k ) ^ 2 ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 169 | 17 168 | sylbid |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. NN ) /\ ( 2 x. k ) = N ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 170 | 169 | rexlimdva2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( E. k e. NN ( 2 x. k ) = N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 171 | 2 170 | sylbid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 172 | 171 | 3imp |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ 2 || N /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |