Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( N = 1 -> ( 2 ^ N ) = ( 2 ^ 1 ) ) |
2 |
|
2cn |
|- 2 e. CC |
3 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
4 |
2 3
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
5 |
1 4
|
eqtrdi |
|- ( N = 1 -> ( 2 ^ N ) = 2 ) |
6 |
5
|
oveq1d |
|- ( N = 1 -> ( ( 2 ^ N ) - 1 ) = ( 2 - 1 ) ) |
7 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
8 |
6 7
|
eqtrdi |
|- ( N = 1 -> ( ( 2 ^ N ) - 1 ) = 1 ) |
9 |
8
|
adantl |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ N = 1 ) -> ( ( 2 ^ N ) - 1 ) = 1 ) |
10 |
9
|
eqeq1d |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ N = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> 1 = ( P ^ M ) ) ) |
11 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
12 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
13 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
14 |
11 12 13
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. NN0 ) |
15 |
14
|
nn0zd |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
16 |
|
iddvdsexp |
|- ( ( P e. ZZ /\ M e. NN ) -> P || ( P ^ M ) ) |
17 |
15 16
|
sylan |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> P || ( P ^ M ) ) |
18 |
|
breq2 |
|- ( 1 = ( P ^ M ) -> ( P || 1 <-> P || ( P ^ M ) ) ) |
19 |
18
|
adantl |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ 1 = ( P ^ M ) ) -> ( P || 1 <-> P || ( P ^ M ) ) ) |
20 |
|
dvds1 |
|- ( P e. NN0 -> ( P || 1 <-> P = 1 ) ) |
21 |
14 20
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P || 1 <-> P = 1 ) ) |
22 |
|
eleq1 |
|- ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) |
23 |
|
1nprm |
|- -. 1 e. Prime |
24 |
23
|
pm2.21i |
|- ( 1 e. Prime -> M = 1 ) |
25 |
22 24
|
syl6bi |
|- ( P = 1 -> ( P e. Prime -> M = 1 ) ) |
26 |
11 25
|
syl5com |
|- ( P e. ( Prime \ { 2 } ) -> ( P = 1 -> M = 1 ) ) |
27 |
21 26
|
sylbid |
|- ( P e. ( Prime \ { 2 } ) -> ( P || 1 -> M = 1 ) ) |
28 |
27
|
ad2antrr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ 1 = ( P ^ M ) ) -> ( P || 1 -> M = 1 ) ) |
29 |
19 28
|
sylbird |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ 1 = ( P ^ M ) ) -> ( P || ( P ^ M ) -> M = 1 ) ) |
30 |
29
|
ex |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( 1 = ( P ^ M ) -> ( P || ( P ^ M ) -> M = 1 ) ) ) |
31 |
17 30
|
mpid |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( 1 = ( P ^ M ) -> M = 1 ) ) |
32 |
31
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ N = 1 ) -> ( 1 = ( P ^ M ) -> M = 1 ) ) |
33 |
10 32
|
sylbid |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ N = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) |
34 |
33
|
ex |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( N = 1 -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) |
35 |
34
|
com23 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( N = 1 -> M = 1 ) ) ) |
36 |
35
|
a1d |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( N = 1 -> M = 1 ) ) ) ) |
37 |
36
|
3adant3 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( N = 1 -> M = 1 ) ) ) ) |
38 |
37
|
3imp |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> ( N = 1 -> M = 1 ) ) |
39 |
|
neqne |
|- ( -. N = 1 -> N =/= 1 ) |
40 |
39
|
anim2i |
|- ( ( N e. NN /\ -. N = 1 ) -> ( N e. NN /\ N =/= 1 ) ) |
41 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
42 |
40 41
|
sylibr |
|- ( ( N e. NN /\ -. N = 1 ) -> N e. ( ZZ>= ` 2 ) ) |
43 |
|
oddge22np1 |
|- ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. j e. NN ( ( 2 x. j ) + 1 ) = N ) ) |
44 |
42 43
|
syl |
|- ( ( N e. NN /\ -. N = 1 ) -> ( -. 2 || N <-> E. j e. NN ( ( 2 x. j ) + 1 ) = N ) ) |
45 |
44
|
3ad2antl3 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. N = 1 ) -> ( -. 2 || N <-> E. j e. NN ( ( 2 x. j ) + 1 ) = N ) ) |
46 |
|
oveq2 |
|- ( N = ( ( 2 x. j ) + 1 ) -> ( 2 ^ N ) = ( 2 ^ ( ( 2 x. j ) + 1 ) ) ) |
47 |
46
|
oveq1d |
|- ( N = ( ( 2 x. j ) + 1 ) -> ( ( 2 ^ N ) - 1 ) = ( ( 2 ^ ( ( 2 x. j ) + 1 ) ) - 1 ) ) |
48 |
47
|
eqcoms |
|- ( ( ( 2 x. j ) + 1 ) = N -> ( ( 2 ^ N ) - 1 ) = ( ( 2 ^ ( ( 2 x. j ) + 1 ) ) - 1 ) ) |
49 |
2
|
a1i |
|- ( j e. NN -> 2 e. CC ) |
50 |
|
2nn0 |
|- 2 e. NN0 |
51 |
50
|
a1i |
|- ( j e. NN -> 2 e. NN0 ) |
52 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
53 |
51 52
|
nn0mulcld |
|- ( j e. NN -> ( 2 x. j ) e. NN0 ) |
54 |
49 53
|
expp1d |
|- ( j e. NN -> ( 2 ^ ( ( 2 x. j ) + 1 ) ) = ( ( 2 ^ ( 2 x. j ) ) x. 2 ) ) |
55 |
51 53
|
nn0expcld |
|- ( j e. NN -> ( 2 ^ ( 2 x. j ) ) e. NN0 ) |
56 |
55
|
nn0cnd |
|- ( j e. NN -> ( 2 ^ ( 2 x. j ) ) e. CC ) |
57 |
56 49
|
mulcomd |
|- ( j e. NN -> ( ( 2 ^ ( 2 x. j ) ) x. 2 ) = ( 2 x. ( 2 ^ ( 2 x. j ) ) ) ) |
58 |
54 57
|
eqtrd |
|- ( j e. NN -> ( 2 ^ ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( 2 ^ ( 2 x. j ) ) ) ) |
59 |
58
|
oveq1d |
|- ( j e. NN -> ( ( 2 ^ ( ( 2 x. j ) + 1 ) ) - 1 ) = ( ( 2 x. ( 2 ^ ( 2 x. j ) ) ) - 1 ) ) |
60 |
|
npcan1 |
|- ( ( 2 ^ ( 2 x. j ) ) e. CC -> ( ( ( 2 ^ ( 2 x. j ) ) - 1 ) + 1 ) = ( 2 ^ ( 2 x. j ) ) ) |
61 |
56 60
|
syl |
|- ( j e. NN -> ( ( ( 2 ^ ( 2 x. j ) ) - 1 ) + 1 ) = ( 2 ^ ( 2 x. j ) ) ) |
62 |
61
|
eqcomd |
|- ( j e. NN -> ( 2 ^ ( 2 x. j ) ) = ( ( ( 2 ^ ( 2 x. j ) ) - 1 ) + 1 ) ) |
63 |
62
|
oveq2d |
|- ( j e. NN -> ( 2 x. ( 2 ^ ( 2 x. j ) ) ) = ( 2 x. ( ( ( 2 ^ ( 2 x. j ) ) - 1 ) + 1 ) ) ) |
64 |
|
peano2cnm |
|- ( ( 2 ^ ( 2 x. j ) ) e. CC -> ( ( 2 ^ ( 2 x. j ) ) - 1 ) e. CC ) |
65 |
56 64
|
syl |
|- ( j e. NN -> ( ( 2 ^ ( 2 x. j ) ) - 1 ) e. CC ) |
66 |
|
1cnd |
|- ( j e. NN -> 1 e. CC ) |
67 |
49 65 66
|
adddid |
|- ( j e. NN -> ( 2 x. ( ( ( 2 ^ ( 2 x. j ) ) - 1 ) + 1 ) ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( 2 x. 1 ) ) ) |
68 |
63 67
|
eqtrd |
|- ( j e. NN -> ( 2 x. ( 2 ^ ( 2 x. j ) ) ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( 2 x. 1 ) ) ) |
69 |
68
|
oveq1d |
|- ( j e. NN -> ( ( 2 x. ( 2 ^ ( 2 x. j ) ) ) - 1 ) = ( ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( 2 x. 1 ) ) - 1 ) ) |
70 |
49 65
|
mulcld |
|- ( j e. NN -> ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) e. CC ) |
71 |
|
ax-1cn |
|- 1 e. CC |
72 |
2 71
|
mulcli |
|- ( 2 x. 1 ) e. CC |
73 |
72
|
a1i |
|- ( j e. NN -> ( 2 x. 1 ) e. CC ) |
74 |
70 73 66
|
addsubassd |
|- ( j e. NN -> ( ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( ( 2 x. 1 ) - 1 ) ) ) |
75 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
76 |
75
|
oveq1i |
|- ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 ) |
77 |
76 7
|
eqtri |
|- ( ( 2 x. 1 ) - 1 ) = 1 |
78 |
77
|
a1i |
|- ( j e. NN -> ( ( 2 x. 1 ) - 1 ) = 1 ) |
79 |
78
|
oveq2d |
|- ( j e. NN -> ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( ( 2 x. 1 ) - 1 ) ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) ) |
80 |
74 79
|
eqtrd |
|- ( j e. NN -> ( ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) ) |
81 |
59 69 80
|
3eqtrd |
|- ( j e. NN -> ( ( 2 ^ ( ( 2 x. j ) + 1 ) ) - 1 ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) ) |
82 |
81
|
ad2antlr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( 2 ^ ( ( 2 x. j ) + 1 ) ) - 1 ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) ) |
83 |
48 82
|
sylan9eqr |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( 2 x. j ) + 1 ) = N ) -> ( ( 2 ^ N ) - 1 ) = ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) ) |
84 |
83
|
eqeq1d |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( 2 x. j ) + 1 ) = N ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) = ( P ^ M ) ) ) |
85 |
14
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. NN0 ) |
86 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
87 |
86
|
3ad2ant2 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. NN0 ) |
88 |
85 87
|
nn0expcld |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P ^ M ) e. NN0 ) |
89 |
88
|
nn0cnd |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P ^ M ) e. CC ) |
90 |
89
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( P ^ M ) e. CC ) |
91 |
|
1cnd |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> 1 e. CC ) |
92 |
70
|
adantl |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) e. CC ) |
93 |
90 91 92
|
3jca |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( ( P ^ M ) e. CC /\ 1 e. CC /\ ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) e. CC ) ) |
94 |
93
|
adantr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( P ^ M ) e. CC /\ 1 e. CC /\ ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) e. CC ) ) |
95 |
|
subadd2 |
|- ( ( ( P ^ M ) e. CC /\ 1 e. CC /\ ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) e. CC ) -> ( ( ( P ^ M ) - 1 ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) <-> ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) = ( P ^ M ) ) ) |
96 |
94 95
|
syl |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( P ^ M ) - 1 ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) <-> ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) = ( P ^ M ) ) ) |
97 |
|
nncn |
|- ( P e. NN -> P e. CC ) |
98 |
11 12 97
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. CC ) |
99 |
98
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. CC ) |
100 |
99 87
|
pwm1geoser |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( P ^ M ) - 1 ) = ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) |
101 |
100
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( ( P ^ M ) - 1 ) = ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) |
102 |
101
|
eqeq1d |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( ( ( P ^ M ) - 1 ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) <-> ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) ) |
103 |
102
|
adantr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( P ^ M ) - 1 ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) <-> ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) ) |
104 |
99
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> P e. CC ) |
105 |
|
1cnd |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> 1 e. CC ) |
106 |
104 105
|
subcld |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( P - 1 ) e. CC ) |
107 |
|
fzfid |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 0 ... ( M - 1 ) ) e. Fin ) |
108 |
85
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> P e. NN0 ) |
109 |
|
elfznn0 |
|- ( k e. ( 0 ... ( M - 1 ) ) -> k e. NN0 ) |
110 |
109
|
adantl |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> k e. NN0 ) |
111 |
108 110
|
nn0expcld |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. NN0 ) |
112 |
111
|
nn0zd |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. ZZ ) |
113 |
107 112
|
fsumzcl |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. ZZ ) |
114 |
113
|
zcnd |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. CC ) |
115 |
114
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. CC ) |
116 |
106 115
|
mulcld |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) e. CC ) |
117 |
56
|
ad2antlr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( 2 ^ ( 2 x. j ) ) e. CC ) |
118 |
117 105
|
subcld |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( 2 ^ ( 2 x. j ) ) - 1 ) e. CC ) |
119 |
|
2rp |
|- 2 e. RR+ |
120 |
119
|
a1i |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> 2 e. RR+ ) |
121 |
120
|
rpcnne0d |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
122 |
|
divmul2 |
|- ( ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) e. CC /\ ( ( 2 ^ ( 2 x. j ) ) - 1 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) / 2 ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) <-> ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) ) |
123 |
116 118 121 122
|
syl3anc |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) / 2 ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) <-> ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) ) |
124 |
|
div23 |
|- ( ( ( P - 1 ) e. CC /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) / 2 ) = ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) |
125 |
106 115 121 124
|
syl3anc |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) / 2 ) = ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) |
126 |
125
|
eqeq1d |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) / 2 ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) <-> ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) |
127 |
51
|
nn0zd |
|- ( j e. NN -> 2 e. ZZ ) |
128 |
|
2nn |
|- 2 e. NN |
129 |
128
|
a1i |
|- ( j e. NN -> 2 e. NN ) |
130 |
|
id |
|- ( j e. NN -> j e. NN ) |
131 |
129 130
|
nnmulcld |
|- ( j e. NN -> ( 2 x. j ) e. NN ) |
132 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ ( 2 x. j ) e. NN ) -> 2 || ( 2 ^ ( 2 x. j ) ) ) |
133 |
127 131 132
|
syl2anc |
|- ( j e. NN -> 2 || ( 2 ^ ( 2 x. j ) ) ) |
134 |
133
|
notnotd |
|- ( j e. NN -> -. -. 2 || ( 2 ^ ( 2 x. j ) ) ) |
135 |
55
|
nn0zd |
|- ( j e. NN -> ( 2 ^ ( 2 x. j ) ) e. ZZ ) |
136 |
|
oddm1even |
|- ( ( 2 ^ ( 2 x. j ) ) e. ZZ -> ( -. 2 || ( 2 ^ ( 2 x. j ) ) <-> 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) |
137 |
135 136
|
syl |
|- ( j e. NN -> ( -. 2 || ( 2 ^ ( 2 x. j ) ) <-> 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) |
138 |
134 137
|
mtbid |
|- ( j e. NN -> -. 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) |
139 |
138
|
ad2antlr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> -. 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) |
140 |
|
breq2 |
|- ( ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> ( 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) <-> 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) |
141 |
140
|
notbid |
|- ( ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> ( -. 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) <-> -. 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) |
142 |
141
|
adantl |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) -> ( -. 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) <-> -. 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) ) |
143 |
|
fzfid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( 0 ... ( M - 1 ) ) e. Fin ) |
144 |
112
|
ad4ant14 |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. ZZ ) |
145 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
146 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
147 |
|
simpr |
|- ( ( P e. Prime /\ P =/= 2 ) -> P =/= 2 ) |
148 |
147
|
necomd |
|- ( ( P e. Prime /\ P =/= 2 ) -> 2 =/= P ) |
149 |
146 148
|
sylbi |
|- ( P e. ( Prime \ { 2 } ) -> 2 =/= P ) |
150 |
149
|
adantl |
|- ( ( k e. NN /\ P e. ( Prime \ { 2 } ) ) -> 2 =/= P ) |
151 |
150
|
neneqd |
|- ( ( k e. NN /\ P e. ( Prime \ { 2 } ) ) -> -. 2 = P ) |
152 |
|
2prm |
|- 2 e. Prime |
153 |
11
|
adantl |
|- ( ( k e. NN /\ P e. ( Prime \ { 2 } ) ) -> P e. Prime ) |
154 |
|
simpl |
|- ( ( k e. NN /\ P e. ( Prime \ { 2 } ) ) -> k e. NN ) |
155 |
|
prmdvdsexpb |
|- ( ( 2 e. Prime /\ P e. Prime /\ k e. NN ) -> ( 2 || ( P ^ k ) <-> 2 = P ) ) |
156 |
152 153 154 155
|
mp3an2i |
|- ( ( k e. NN /\ P e. ( Prime \ { 2 } ) ) -> ( 2 || ( P ^ k ) <-> 2 = P ) ) |
157 |
151 156
|
mtbird |
|- ( ( k e. NN /\ P e. ( Prime \ { 2 } ) ) -> -. 2 || ( P ^ k ) ) |
158 |
157
|
ex |
|- ( k e. NN -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
159 |
|
n2dvds1 |
|- -. 2 || 1 |
160 |
|
oveq2 |
|- ( k = 0 -> ( P ^ k ) = ( P ^ 0 ) ) |
161 |
98
|
exp0d |
|- ( P e. ( Prime \ { 2 } ) -> ( P ^ 0 ) = 1 ) |
162 |
160 161
|
sylan9eq |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ k ) = 1 ) |
163 |
162
|
breq2d |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( 2 || ( P ^ k ) <-> 2 || 1 ) ) |
164 |
159 163
|
mtbiri |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> -. 2 || ( P ^ k ) ) |
165 |
164
|
ex |
|- ( k = 0 -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
166 |
158 165
|
jaoi |
|- ( ( k e. NN \/ k = 0 ) -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
167 |
145 166
|
sylbi |
|- ( k e. NN0 -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
168 |
167 109
|
syl11 |
|- ( P e. ( Prime \ { 2 } ) -> ( k e. ( 0 ... ( M - 1 ) ) -> -. 2 || ( P ^ k ) ) ) |
169 |
168
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( k e. ( 0 ... ( M - 1 ) ) -> -. 2 || ( P ^ k ) ) ) |
170 |
169
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( k e. ( 0 ... ( M - 1 ) ) -> -. 2 || ( P ^ k ) ) ) |
171 |
170
|
imp |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> -. 2 || ( P ^ k ) ) |
172 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
173 |
|
hashfz0 |
|- ( ( M - 1 ) e. NN0 -> ( # ` ( 0 ... ( M - 1 ) ) ) = ( ( M - 1 ) + 1 ) ) |
174 |
172 173
|
syl |
|- ( M e. NN -> ( # ` ( 0 ... ( M - 1 ) ) ) = ( ( M - 1 ) + 1 ) ) |
175 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
176 |
|
1cnd |
|- ( M e. NN -> 1 e. CC ) |
177 |
175 176
|
npcand |
|- ( M e. NN -> ( ( M - 1 ) + 1 ) = M ) |
178 |
174 177
|
eqtr2d |
|- ( M e. NN -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) |
179 |
178
|
3ad2ant2 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) |
180 |
179
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) |
181 |
180
|
breq2d |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( 2 || M <-> 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) |
182 |
181
|
biimpa |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) |
183 |
143 144 171 182
|
evensumodd |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) |
184 |
183
|
olcd |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( 2 || ( ( P - 1 ) / 2 ) \/ 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) |
185 |
152
|
a1i |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> 2 e. Prime ) |
186 |
|
oddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> -. 2 || P ) |
187 |
|
oddm1d2 |
|- ( P e. ZZ -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) |
188 |
15 187
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) |
189 |
186 188
|
mpbid |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. ZZ ) |
190 |
189
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( ( P - 1 ) / 2 ) e. ZZ ) |
191 |
|
fzfid |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( 0 ... ( M - 1 ) ) e. Fin ) |
192 |
14
|
ad2antrr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> P e. NN0 ) |
193 |
109
|
adantl |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> k e. NN0 ) |
194 |
192 193
|
nn0expcld |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. NN0 ) |
195 |
194
|
nn0zd |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. ZZ ) |
196 |
191 195
|
fsumzcl |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. ZZ ) |
197 |
185 190 196
|
3jca |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN ) -> ( 2 e. Prime /\ ( ( P - 1 ) / 2 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. ZZ ) ) |
198 |
197
|
3adant3 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 e. Prime /\ ( ( P - 1 ) / 2 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. ZZ ) ) |
199 |
|
euclemma |
|- ( ( 2 e. Prime /\ ( ( P - 1 ) / 2 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) e. ZZ ) -> ( 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) <-> ( 2 || ( ( P - 1 ) / 2 ) \/ 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) ) |
200 |
198 199
|
syl |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) <-> ( 2 || ( ( P - 1 ) / 2 ) \/ 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) ) |
201 |
200
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) <-> ( 2 || ( ( P - 1 ) / 2 ) \/ 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) ) |
202 |
184 201
|
mpbird |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) ) |
203 |
202
|
pm2.24d |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( -. 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) -> M = 1 ) ) |
204 |
203
|
adantr |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) -> ( -. 2 || ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) -> M = 1 ) ) |
205 |
142 204
|
sylbird |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) -> ( -. 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> M = 1 ) ) |
206 |
205
|
ex |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> ( -. 2 || ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> M = 1 ) ) ) |
207 |
139 206
|
mpid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( ( P - 1 ) / 2 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> M = 1 ) ) |
208 |
126 207
|
sylbid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) / 2 ) = ( ( 2 ^ ( 2 x. j ) ) - 1 ) -> M = 1 ) ) |
209 |
123 208
|
sylbird |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( P - 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( P ^ k ) ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) -> M = 1 ) ) |
210 |
103 209
|
sylbid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( P ^ M ) - 1 ) = ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) -> M = 1 ) ) |
211 |
96 210
|
sylbird |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) -> ( ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) = ( P ^ M ) -> M = 1 ) ) |
212 |
211
|
adantr |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( 2 x. j ) + 1 ) = N ) -> ( ( ( 2 x. ( ( 2 ^ ( 2 x. j ) ) - 1 ) ) + 1 ) = ( P ^ M ) -> M = 1 ) ) |
213 |
84 212
|
sylbid |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) /\ 2 || M ) /\ ( ( 2 x. j ) + 1 ) = N ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) |
214 |
213
|
exp31 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( 2 || M -> ( ( ( 2 x. j ) + 1 ) = N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
215 |
214
|
com23 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ j e. NN ) -> ( ( ( 2 x. j ) + 1 ) = N -> ( 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
216 |
215
|
rexlimdva |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( E. j e. NN ( ( 2 x. j ) + 1 ) = N -> ( 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
217 |
216
|
com34 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( E. j e. NN ( ( 2 x. j ) + 1 ) = N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( 2 || M -> M = 1 ) ) ) ) |
218 |
217
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. N = 1 ) -> ( E. j e. NN ( ( 2 x. j ) + 1 ) = N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( 2 || M -> M = 1 ) ) ) ) |
219 |
45 218
|
sylbid |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. N = 1 ) -> ( -. 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( 2 || M -> M = 1 ) ) ) ) |
220 |
219
|
com24 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. N = 1 ) -> ( 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( -. 2 || N -> M = 1 ) ) ) ) |
221 |
220
|
ex |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. N = 1 -> ( 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( -. 2 || N -> M = 1 ) ) ) ) ) |
222 |
221
|
com25 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. 2 || N -> ( 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( -. N = 1 -> M = 1 ) ) ) ) ) |
223 |
222
|
impd |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( -. N = 1 -> M = 1 ) ) ) ) |
224 |
223
|
3imp |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> ( -. N = 1 -> M = 1 ) ) |
225 |
38 224
|
pm2.61d |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |