| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
2cn |
|
| 3 |
|
exp1 |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
1 4
|
eqtrdi |
|
| 6 |
5
|
oveq1d |
|
| 7 |
|
2m1e1 |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
|
eldifi |
|
| 12 |
|
prmnn |
|
| 13 |
|
nnnn0 |
|
| 14 |
11 12 13
|
3syl |
|
| 15 |
14
|
nn0zd |
|
| 16 |
|
iddvdsexp |
|
| 17 |
15 16
|
sylan |
|
| 18 |
|
breq2 |
|
| 19 |
18
|
adantl |
|
| 20 |
|
dvds1 |
|
| 21 |
14 20
|
syl |
|
| 22 |
|
eleq1 |
|
| 23 |
|
1nprm |
|
| 24 |
23
|
pm2.21i |
|
| 25 |
22 24
|
biimtrdi |
|
| 26 |
11 25
|
syl5com |
|
| 27 |
21 26
|
sylbid |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
19 28
|
sylbird |
|
| 30 |
29
|
ex |
|
| 31 |
17 30
|
mpid |
|
| 32 |
31
|
adantr |
|
| 33 |
10 32
|
sylbid |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
com23 |
|
| 36 |
35
|
a1d |
|
| 37 |
36
|
3adant3 |
|
| 38 |
37
|
3imp |
|
| 39 |
|
neqne |
|
| 40 |
39
|
anim2i |
|
| 41 |
|
eluz2b3 |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
|
oddge22np1 |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
3ad2antl3 |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
oveq1d |
|
| 48 |
47
|
eqcoms |
|
| 49 |
2
|
a1i |
|
| 50 |
|
2nn0 |
|
| 51 |
50
|
a1i |
|
| 52 |
|
nnnn0 |
|
| 53 |
51 52
|
nn0mulcld |
|
| 54 |
49 53
|
expp1d |
|
| 55 |
51 53
|
nn0expcld |
|
| 56 |
55
|
nn0cnd |
|
| 57 |
56 49
|
mulcomd |
|
| 58 |
54 57
|
eqtrd |
|
| 59 |
58
|
oveq1d |
|
| 60 |
|
npcan1 |
|
| 61 |
56 60
|
syl |
|
| 62 |
61
|
eqcomd |
|
| 63 |
62
|
oveq2d |
|
| 64 |
|
peano2cnm |
|
| 65 |
56 64
|
syl |
|
| 66 |
|
1cnd |
|
| 67 |
49 65 66
|
adddid |
|
| 68 |
63 67
|
eqtrd |
|
| 69 |
68
|
oveq1d |
|
| 70 |
49 65
|
mulcld |
|
| 71 |
|
ax-1cn |
|
| 72 |
2 71
|
mulcli |
|
| 73 |
72
|
a1i |
|
| 74 |
70 73 66
|
addsubassd |
|
| 75 |
|
2t1e2 |
|
| 76 |
75
|
oveq1i |
|
| 77 |
76 7
|
eqtri |
|
| 78 |
77
|
a1i |
|
| 79 |
78
|
oveq2d |
|
| 80 |
74 79
|
eqtrd |
|
| 81 |
59 69 80
|
3eqtrd |
|
| 82 |
81
|
ad2antlr |
|
| 83 |
48 82
|
sylan9eqr |
|
| 84 |
83
|
eqeq1d |
|
| 85 |
14
|
3ad2ant1 |
|
| 86 |
|
nnnn0 |
|
| 87 |
86
|
3ad2ant2 |
|
| 88 |
85 87
|
nn0expcld |
|
| 89 |
88
|
nn0cnd |
|
| 90 |
89
|
adantr |
|
| 91 |
|
1cnd |
|
| 92 |
70
|
adantl |
|
| 93 |
90 91 92
|
3jca |
|
| 94 |
93
|
adantr |
|
| 95 |
|
subadd2 |
|
| 96 |
94 95
|
syl |
|
| 97 |
|
nncn |
|
| 98 |
11 12 97
|
3syl |
|
| 99 |
98
|
3ad2ant1 |
|
| 100 |
99 87
|
pwm1geoser |
|
| 101 |
100
|
adantr |
|
| 102 |
101
|
eqeq1d |
|
| 103 |
102
|
adantr |
|
| 104 |
99
|
ad2antrr |
|
| 105 |
|
1cnd |
|
| 106 |
104 105
|
subcld |
|
| 107 |
|
fzfid |
|
| 108 |
85
|
adantr |
|
| 109 |
|
elfznn0 |
|
| 110 |
109
|
adantl |
|
| 111 |
108 110
|
nn0expcld |
|
| 112 |
111
|
nn0zd |
|
| 113 |
107 112
|
fsumzcl |
|
| 114 |
113
|
zcnd |
|
| 115 |
114
|
ad2antrr |
|
| 116 |
106 115
|
mulcld |
|
| 117 |
56
|
ad2antlr |
|
| 118 |
117 105
|
subcld |
|
| 119 |
|
2rp |
|
| 120 |
119
|
a1i |
|
| 121 |
120
|
rpcnne0d |
|
| 122 |
|
divmul2 |
|
| 123 |
116 118 121 122
|
syl3anc |
|
| 124 |
|
div23 |
|
| 125 |
106 115 121 124
|
syl3anc |
|
| 126 |
125
|
eqeq1d |
|
| 127 |
51
|
nn0zd |
|
| 128 |
|
2nn |
|
| 129 |
128
|
a1i |
|
| 130 |
|
id |
|
| 131 |
129 130
|
nnmulcld |
|
| 132 |
|
iddvdsexp |
|
| 133 |
127 131 132
|
syl2anc |
|
| 134 |
133
|
notnotd |
|
| 135 |
55
|
nn0zd |
|
| 136 |
|
oddm1even |
|
| 137 |
135 136
|
syl |
|
| 138 |
134 137
|
mtbid |
|
| 139 |
138
|
ad2antlr |
|
| 140 |
|
breq2 |
|
| 141 |
140
|
notbid |
|
| 142 |
141
|
adantl |
|
| 143 |
|
fzfid |
|
| 144 |
112
|
ad4ant14 |
|
| 145 |
|
elnn0 |
|
| 146 |
|
eldifsn |
|
| 147 |
|
simpr |
|
| 148 |
147
|
necomd |
|
| 149 |
146 148
|
sylbi |
|
| 150 |
149
|
adantl |
|
| 151 |
150
|
neneqd |
|
| 152 |
|
2prm |
|
| 153 |
11
|
adantl |
|
| 154 |
|
simpl |
|
| 155 |
|
prmdvdsexpb |
|
| 156 |
152 153 154 155
|
mp3an2i |
|
| 157 |
151 156
|
mtbird |
|
| 158 |
157
|
ex |
|
| 159 |
|
n2dvds1 |
|
| 160 |
|
oveq2 |
|
| 161 |
98
|
exp0d |
|
| 162 |
160 161
|
sylan9eq |
|
| 163 |
162
|
breq2d |
|
| 164 |
159 163
|
mtbiri |
|
| 165 |
164
|
ex |
|
| 166 |
158 165
|
jaoi |
|
| 167 |
145 166
|
sylbi |
|
| 168 |
167 109
|
syl11 |
|
| 169 |
168
|
3ad2ant1 |
|
| 170 |
169
|
ad2antrr |
|
| 171 |
170
|
imp |
|
| 172 |
|
nnm1nn0 |
|
| 173 |
|
hashfz0 |
|
| 174 |
172 173
|
syl |
|
| 175 |
|
nncn |
|
| 176 |
|
1cnd |
|
| 177 |
175 176
|
npcand |
|
| 178 |
174 177
|
eqtr2d |
|
| 179 |
178
|
3ad2ant2 |
|
| 180 |
179
|
adantr |
|
| 181 |
180
|
breq2d |
|
| 182 |
181
|
biimpa |
|
| 183 |
143 144 171 182
|
evensumodd |
|
| 184 |
183
|
olcd |
|
| 185 |
152
|
a1i |
|
| 186 |
|
oddn2prm |
|
| 187 |
|
oddm1d2 |
|
| 188 |
15 187
|
syl |
|
| 189 |
186 188
|
mpbid |
|
| 190 |
189
|
adantr |
|
| 191 |
|
fzfid |
|
| 192 |
14
|
ad2antrr |
|
| 193 |
109
|
adantl |
|
| 194 |
192 193
|
nn0expcld |
|
| 195 |
194
|
nn0zd |
|
| 196 |
191 195
|
fsumzcl |
|
| 197 |
185 190 196
|
3jca |
|
| 198 |
197
|
3adant3 |
|
| 199 |
|
euclemma |
|
| 200 |
198 199
|
syl |
|
| 201 |
200
|
ad2antrr |
|
| 202 |
184 201
|
mpbird |
|
| 203 |
202
|
pm2.24d |
|
| 204 |
203
|
adantr |
|
| 205 |
142 204
|
sylbird |
|
| 206 |
205
|
ex |
|
| 207 |
139 206
|
mpid |
|
| 208 |
126 207
|
sylbid |
|
| 209 |
123 208
|
sylbird |
|
| 210 |
103 209
|
sylbid |
|
| 211 |
96 210
|
sylbird |
|
| 212 |
211
|
adantr |
|
| 213 |
84 212
|
sylbid |
|
| 214 |
213
|
exp31 |
|
| 215 |
214
|
com23 |
|
| 216 |
215
|
rexlimdva |
|
| 217 |
216
|
com34 |
|
| 218 |
217
|
adantr |
|
| 219 |
45 218
|
sylbid |
|
| 220 |
219
|
com24 |
|
| 221 |
220
|
ex |
|
| 222 |
221
|
com25 |
|
| 223 |
222
|
impd |
|
| 224 |
223
|
3imp |
|
| 225 |
38 224
|
pm2.61d |
|