Metamath Proof Explorer


Theorem lighneallem4a

Description: Lemma 1 for lighneallem4 . (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion lighneallem4a A 2 M 3 S = A M + 1 A + 1 2 S

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i A 2 2
3 eluzelre A 2 A
4 peano2re A A + 1
5 3 4 syl A 2 A + 1
6 2 5 remulcld A 2 2 A + 1
7 6 adantr A 2 M 3 2 A + 1
8 eluzge2nn0 A 2 A 0
9 8 adantr A 2 M 3 A 0
10 eluzge3nn M 3 M
11 10 nnnn0d M 3 M 0
12 11 adantl A 2 M 3 M 0
13 9 12 nn0expcld A 2 M 3 A M 0
14 13 nn0red A 2 M 3 A M
15 peano2re A M A M + 1
16 14 15 syl A 2 M 3 A M + 1
17 2 3 remulcld A 2 2 A
18 2 17 remulcld A 2 2 2 A
19 18 adantr A 2 M 3 2 2 A
20 1red A 2 1
21 eluz2nn A 2 A
22 21 nnge1d A 2 1 A
23 20 3 3 22 leadd2dd A 2 A + 1 A + A
24 eluzelcn A 2 A
25 24 2timesd A 2 2 A = A + A
26 23 25 breqtrrd A 2 A + 1 2 A
27 26 adantr A 2 M 3 A + 1 2 A
28 2pos 0 < 2
29 1 28 pm3.2i 2 0 < 2
30 29 a1i A 2 2 0 < 2
31 5 17 30 3jca A 2 A + 1 2 A 2 0 < 2
32 31 adantr A 2 M 3 A + 1 2 A 2 0 < 2
33 lemul2 A + 1 2 A 2 0 < 2 A + 1 2 A 2 A + 1 2 2 A
34 32 33 syl A 2 M 3 A + 1 2 A 2 A + 1 2 2 A
35 27 34 mpbid A 2 M 3 2 A + 1 2 2 A
36 2cn 2
37 36 a1i A 2 M 3 2
38 24 adantr A 2 M 3 A
39 37 37 38 mulassd A 2 M 3 2 2 A = 2 2 A
40 sq2 2 2 = 4
41 4re 4
42 40 41 eqeltri 2 2
43 42 a1i A 2 M 3 2 2
44 nn0sqcl A 0 A 2 0
45 8 44 syl A 2 A 2 0
46 45 nn0red A 2 A 2
47 46 adantr A 2 M 3 A 2
48 nnm1nn0 M M 1 0
49 10 48 syl M 3 M 1 0
50 49 adantl A 2 M 3 M 1 0
51 9 50 nn0expcld A 2 M 3 A M 1 0
52 51 nn0red A 2 M 3 A M 1
53 2nn0 2 0
54 53 a1i A 2 2 0
55 2 3 54 3jca A 2 2 A 2 0
56 55 adantr A 2 M 3 2 A 2 0
57 0le2 0 2
58 57 a1i A 2 M 3 0 2
59 eluzle A 2 2 A
60 59 adantr A 2 M 3 2 A
61 leexp1a 2 A 2 0 0 2 2 A 2 2 A 2
62 56 58 60 61 syl12anc A 2 M 3 2 2 A 2
63 2p1e3 2 + 1 = 3
64 eluzle M 3 3 M
65 63 64 eqbrtrid M 3 2 + 1 M
66 1red M 3 1
67 eluzelre M 3 M
68 leaddsub 2 1 M 2 + 1 M 2 M 1
69 1 66 67 68 mp3an2i M 3 2 + 1 M 2 M 1
70 65 69 mpbid M 3 2 M 1
71 70 adantl A 2 M 3 2 M 1
72 3 adantr A 2 M 3 A
73 2z 2
74 73 a1i A 2 M 3 2
75 eluzelz M 3 M
76 peano2zm M M 1
77 75 76 syl M 3 M 1
78 77 adantl A 2 M 3 M 1
79 eluz2gt1 A 2 1 < A
80 79 adantr A 2 M 3 1 < A
81 72 74 78 80 leexp2d A 2 M 3 2 M 1 A 2 A M 1
82 71 81 mpbid A 2 M 3 A 2 A M 1
83 43 47 52 62 82 letrd A 2 M 3 2 2 A M 1
84 36 sqvali 2 2 = 2 2
85 84 eqcomi 2 2 = 2 2
86 85 a1i A 2 M 3 2 2 = 2 2
87 eluz2n0 A 2 A 0
88 87 adantr A 2 M 3 A 0
89 75 adantl A 2 M 3 M
90 38 88 89 expm1d A 2 M 3 A M 1 = A M A
91 90 eqcomd A 2 M 3 A M A = A M 1
92 83 86 91 3brtr4d A 2 M 3 2 2 A M A
93 1 1 remulcli 2 2
94 21 nngt0d A 2 0 < A
95 3 94 jca A 2 A 0 < A
96 95 adantr A 2 M 3 A 0 < A
97 lemuldiv 2 2 A M A 0 < A 2 2 A A M 2 2 A M A
98 93 14 96 97 mp3an2i A 2 M 3 2 2 A A M 2 2 A M A
99 92 98 mpbird A 2 M 3 2 2 A A M
100 39 99 eqbrtrrd A 2 M 3 2 2 A A M
101 7 19 14 35 100 letrd A 2 M 3 2 A + 1 A M
102 14 lep1d A 2 M 3 A M A M + 1
103 7 14 16 101 102 letrd A 2 M 3 2 A + 1 A M + 1
104 nnnn0 A A 0
105 nn0p1gt0 A 0 0 < A + 1
106 21 104 105 3syl A 2 0 < A + 1
107 5 106 jca A 2 A + 1 0 < A + 1
108 107 adantr A 2 M 3 A + 1 0 < A + 1
109 lemuldiv 2 A M + 1 A + 1 0 < A + 1 2 A + 1 A M + 1 2 A M + 1 A + 1
110 1 16 108 109 mp3an2i A 2 M 3 2 A + 1 A M + 1 2 A M + 1 A + 1
111 103 110 mpbid A 2 M 3 2 A M + 1 A + 1
112 111 3adant3 A 2 M 3 S = A M + 1 A + 1 2 A M + 1 A + 1
113 breq2 S = A M + 1 A + 1 2 S 2 A M + 1 A + 1
114 113 3ad2ant3 A 2 M 3 S = A M + 1 A + 1 2 S 2 A M + 1 A + 1
115 112 114 mpbird A 2 M 3 S = A M + 1 A + 1 2 S