Metamath Proof Explorer


Theorem lighneallem4

Description: Lemma 3 for lighneal . (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion lighneallem4 P2MN¬2N¬2M2N1=PMM=1

Proof

Step Hyp Ref Expression
1 2cnd N2
2 nnnn0 NN0
3 1 2 expcld N2N
4 3 3ad2ant3 P2MN2N
5 1cnd P2MN1
6 eldifi P2P
7 prmnn PP
8 nncn PP
9 6 7 8 3syl P2P
10 9 3ad2ant1 P2MNP
11 nnnn0 MM0
12 11 3ad2ant2 P2MNM0
13 10 12 expcld P2MNPM
14 4 5 13 3jca P2MN2N1PM
15 14 adantr P2MN¬2M2N1PM
16 subadd2 2N1PM2N1=PMPM+1=2N
17 15 16 syl P2MN¬2M2N1=PMPM+1=2N
18 10 adantr P2MN¬2MP
19 simpl2 P2MN¬2MM
20 simpr P2MN¬2M¬2M
21 18 19 20 oddpwp1fsum P2MN¬2MPM+1=P+1k=0M11kPk
22 21 eqeq1d P2MN¬2MPM+1=2NP+1k=0M11kPk=2N
23 peano2nn PP+1
24 23 nnzd PP+1
25 6 7 24 3syl P2P+1
26 25 3ad2ant1 P2MNP+1
27 fzfid P2MN0M1Fin
28 neg1z 1
29 28 a1i P2MN1
30 elfznn0 k0M1k0
31 zexpcl 1k01k
32 29 30 31 syl2an P2MNk0M11k
33 nnz PP
34 6 7 33 3syl P2P
35 34 3ad2ant1 P2MNP
36 zexpcl Pk0Pk
37 35 30 36 syl2an P2MNk0M1Pk
38 32 37 zmulcld P2MNk0M11kPk
39 27 38 fsumzcl P2MNk=0M11kPk
40 26 39 jca P2MNP+1k=0M11kPk
41 40 ad2antrr P2MN¬2MP+1k=0M11kPk=2NP+1k=0M11kPk
42 dvdsmul2 P+1k=0M11kPkk=0M11kPkP+1k=0M11kPk
43 41 42 syl P2MN¬2MP+1k=0M11kPk=2Nk=0M11kPkP+1k=0M11kPk
44 breq2 P+1k=0M11kPk=2Nk=0M11kPkP+1k=0M11kPkk=0M11kPk2N
45 44 adantl P2MN¬2MP+1k=0M11kPk=2Nk=0M11kPkP+1k=0M11kPkk=0M11kPk2N
46 2a1 M=1P2MN¬2Mk=0M11kPk2NM=1
47 2prm 2
48 prmuz2 PP2
49 6 48 syl P2P2
50 49 3ad2ant1 P2MNP2
51 50 adantr P2MN¬M=1¬2MP2
52 df-ne M1¬M=1
53 eluz2b3 M2MM1
54 53 simplbi2 MM1M2
55 52 54 biimtrrid M¬M=1M2
56 55 3ad2ant2 P2MN¬M=1M2
57 56 com12 ¬M=1P2MNM2
58 57 adantr ¬M=1¬2MP2MNM2
59 58 impcom P2MN¬M=1¬2MM2
60 simprr P2MN¬M=1¬2M¬2M
61 lighneallem4b P2M2¬2Mk=0M11kPk2
62 51 59 60 61 syl3anc P2MN¬M=1¬2Mk=0M11kPk2
63 2 3ad2ant3 P2MNN0
64 63 adantr P2MN¬M=1¬2MN0
65 dvdsprmpweqnn 2k=0M11kPk2N0k=0M11kPk2Nnk=0M11kPk=2n
66 47 62 64 65 mp3an2i P2MN¬M=1¬2Mk=0M11kPk2Nnk=0M11kPk=2n
67 2z 2
68 67 a1i P2MN¬M=1¬2M2
69 iddvdsexp 2n22n
70 68 69 sylan P2MN¬M=1¬2Mn22n
71 breq2 k=0M11kPk=2n2k=0M11kPk22n
72 71 adantl P2MN¬M=1¬2Mnk=0M11kPk=2n2k=0M11kPk22n
73 fzfid P2MN¬M=1¬2Mn0M1Fin
74 28 a1i P1
75 74 31 sylan Pk01k
76 nnnn0 PP0
77 76 adantr Pk0P0
78 simpr Pk0k0
79 77 78 nn0expcld Pk0Pk0
80 79 nn0zd Pk0Pk
81 75 80 zmulcld Pk01kPk
82 81 ex Pk01kPk
83 6 7 82 3syl P2k01kPk
84 83 3ad2ant1 P2MNk01kPk
85 84 ad2antrr P2MN¬M=1¬2Mnk01kPk
86 85 30 impel P2MN¬M=1¬2Mnk0M11kPk
87 nn0z k0k
88 m1expcl2 k1k11
89 87 88 syl k01k11
90 ovex 1kV
91 90 elpr 1k111k=11k=1
92 n2dvdsm1 ¬2-1
93 breq2 1k=121k2-1
94 92 93 mtbiri 1k=1¬21k
95 n2dvds1 ¬21
96 breq2 1k=121k21
97 95 96 mtbiri 1k=1¬21k
98 94 97 jaoi 1k=11k=1¬21k
99 98 a1d 1k=11k=1k0¬21k
100 91 99 sylbi 1k11k0¬21k
101 89 100 mpcom k0¬21k
102 101 adantl P2k0¬21k
103 elnn0 k0kk=0
104 oddn2prm P2¬2P
105 104 adantr P2k¬2P
106 simpr P2kk
107 prmdvdsexp 2Pk2Pk2P
108 47 34 106 107 mp3an2ani P2k2Pk2P
109 105 108 mtbird P2k¬2Pk
110 109 expcom kP2¬2Pk
111 oveq2 k=0Pk=P0
112 111 adantr k=0P2Pk=P0
113 9 adantl k=0P2P
114 113 exp0d k=0P2P0=1
115 112 114 eqtrd k=0P2Pk=1
116 115 breq2d k=0P22Pk21
117 95 116 mtbiri k=0P2¬2Pk
118 117 ex k=0P2¬2Pk
119 110 118 jaoi kk=0P2¬2Pk
120 103 119 sylbi k0P2¬2Pk
121 120 impcom P2k0¬2Pk
122 ioran ¬21k2Pk¬21k¬2Pk
123 102 121 122 sylanbrc P2k0¬21k2Pk
124 28 31 mpan k01k
125 124 adantl P2k01k
126 6 7 76 3syl P2P0
127 126 adantr P2k0P0
128 simpr P2k0k0
129 127 128 nn0expcld P2k0Pk0
130 129 nn0zd P2k0Pk
131 euclemma 21kPk21kPk21k2Pk
132 47 125 130 131 mp3an2i P2k021kPk21k2Pk
133 123 132 mtbird P2k0¬21kPk
134 133 ex P2k0¬21kPk
135 134 3ad2ant1 P2MNk0¬21kPk
136 135 ad2antrr P2MN¬M=1¬2Mnk0¬21kPk
137 136 30 impel P2MN¬M=1¬2Mnk0M1¬21kPk
138 nnm1nn0 MM10
139 hashfz0 M100M1=M-1+1
140 138 139 syl M0M1=M-1+1
141 nncn MM
142 npcan1 MM-1+1=M
143 141 142 syl MM-1+1=M
144 140 143 eqtr2d MM=0M1
145 144 3ad2ant2 P2MNM=0M1
146 145 adantr P2MN¬M=1M=0M1
147 146 breq2d P2MN¬M=12M20M1
148 147 notbid P2MN¬M=1¬2M¬20M1
149 148 biimpd P2MN¬M=1¬2M¬20M1
150 149 impr P2MN¬M=1¬2M¬20M1
151 150 adantr P2MN¬M=1¬2Mn¬20M1
152 73 86 137 151 oddsumodd P2MN¬M=1¬2Mn¬2k=0M11kPk
153 152 pm2.21d P2MN¬M=1¬2Mn2k=0M11kPkM=1
154 153 adantr P2MN¬M=1¬2Mnk=0M11kPk=2n2k=0M11kPkM=1
155 72 154 sylbird P2MN¬M=1¬2Mnk=0M11kPk=2n22nM=1
156 155 ex P2MN¬M=1¬2Mnk=0M11kPk=2n22nM=1
157 70 156 mpid P2MN¬M=1¬2Mnk=0M11kPk=2nM=1
158 157 rexlimdva P2MN¬M=1¬2Mnk=0M11kPk=2nM=1
159 66 158 syld P2MN¬M=1¬2Mk=0M11kPk2NM=1
160 159 exp32 P2MN¬M=1¬2Mk=0M11kPk2NM=1
161 160 com12 ¬M=1P2MN¬2Mk=0M11kPk2NM=1
162 161 impd ¬M=1P2MN¬2Mk=0M11kPk2NM=1
163 46 162 pm2.61i P2MN¬2Mk=0M11kPk2NM=1
164 163 adantr P2MN¬2MP+1k=0M11kPk=2Nk=0M11kPk2NM=1
165 45 164 sylbid P2MN¬2MP+1k=0M11kPk=2Nk=0M11kPkP+1k=0M11kPkM=1
166 43 165 mpd P2MN¬2MP+1k=0M11kPk=2NM=1
167 166 ex P2MN¬2MP+1k=0M11kPk=2NM=1
168 22 167 sylbid P2MN¬2MPM+1=2NM=1
169 17 168 sylbid P2MN¬2M2N1=PMM=1
170 169 ex P2MN¬2M2N1=PMM=1
171 170 adantld P2MN¬2N¬2M2N1=PMM=1
172 171 3imp P2MN¬2N¬2M2N1=PMM=1