Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Mersenne primes
lighneallem4
Next ⟩
lighneal
Metamath Proof Explorer
Ascii
Unicode
Theorem
lighneallem4
Description:
Lemma 3 for
lighneal
.
(Contributed by
AV
, 16-Aug-2021)
Ref
Expression
Assertion
lighneallem4
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
N
∧
¬
2
∥
M
∧
2
N
−
1
=
P
M
→
M
=
1
Proof
Step
Hyp
Ref
Expression
1
2cnd
⊢
N
∈
ℕ
→
2
∈
ℂ
2
nnnn0
⊢
N
∈
ℕ
→
N
∈
ℕ
0
3
1
2
expcld
⊢
N
∈
ℕ
→
2
N
∈
ℂ
4
3
3ad2ant3
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
2
N
∈
ℂ
5
1cnd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
1
∈
ℂ
6
eldifi
⊢
P
∈
ℙ
∖
2
→
P
∈
ℙ
7
prmnn
⊢
P
∈
ℙ
→
P
∈
ℕ
8
nncn
⊢
P
∈
ℕ
→
P
∈
ℂ
9
6
7
8
3syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℂ
10
9
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
∈
ℂ
11
nnnn0
⊢
M
∈
ℕ
→
M
∈
ℕ
0
12
11
3ad2ant2
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
M
∈
ℕ
0
13
10
12
expcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
M
∈
ℂ
14
4
5
13
3jca
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
2
N
∈
ℂ
∧
1
∈
ℂ
∧
P
M
∈
ℂ
15
14
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
2
N
∈
ℂ
∧
1
∈
ℂ
∧
P
M
∈
ℂ
16
subadd2
⊢
2
N
∈
ℂ
∧
1
∈
ℂ
∧
P
M
∈
ℂ
→
2
N
−
1
=
P
M
↔
P
M
+
1
=
2
N
17
15
16
syl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
2
N
−
1
=
P
M
↔
P
M
+
1
=
2
N
18
10
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
P
∈
ℂ
19
simpl2
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
M
∈
ℕ
20
simpr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
¬
2
∥
M
21
18
19
20
oddpwp1fsum
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
P
M
+
1
=
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
22
21
eqeq1d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
P
M
+
1
=
2
N
↔
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
23
peano2nn
⊢
P
∈
ℕ
→
P
+
1
∈
ℕ
24
23
nnzd
⊢
P
∈
ℕ
→
P
+
1
∈
ℤ
25
6
7
24
3syl
⊢
P
∈
ℙ
∖
2
→
P
+
1
∈
ℤ
26
25
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
+
1
∈
ℤ
27
fzfid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
0
…
M
−
1
∈
Fin
28
neg1z
⊢
−
1
∈
ℤ
29
28
a1i
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
−
1
∈
ℤ
30
elfznn0
⊢
k
∈
0
…
M
−
1
→
k
∈
ℕ
0
31
zexpcl
⊢
−
1
∈
ℤ
∧
k
∈
ℕ
0
→
−
1
k
∈
ℤ
32
29
30
31
syl2an
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
−
1
k
∈
ℤ
33
nnz
⊢
P
∈
ℕ
→
P
∈
ℤ
34
6
7
33
3syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℤ
35
34
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
∈
ℤ
36
zexpcl
⊢
P
∈
ℤ
∧
k
∈
ℕ
0
→
P
k
∈
ℤ
37
35
30
36
syl2an
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
k
∈
ℤ
38
32
37
zmulcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
−
1
k
P
k
∈
ℤ
39
27
38
fsumzcl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
40
26
39
jca
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
+
1
∈
ℤ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
41
40
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
∧
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
P
+
1
∈
ℤ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
42
dvdsmul2
⊢
P
+
1
∈
ℤ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
43
41
42
syl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
∧
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
44
breq2
⊢
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
↔
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
45
44
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
∧
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
↔
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
46
2a1
⊢
M
=
1
→
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
47
2prm
⊢
2
∈
ℙ
48
prmuz2
⊢
P
∈
ℙ
→
P
∈
ℤ
≥
2
49
6
48
syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℤ
≥
2
50
49
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
∈
ℤ
≥
2
51
50
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
P
∈
ℤ
≥
2
52
df-ne
⊢
M
≠
1
↔
¬
M
=
1
53
eluz2b3
⊢
M
∈
ℤ
≥
2
↔
M
∈
ℕ
∧
M
≠
1
54
53
simplbi2
⊢
M
∈
ℕ
→
M
≠
1
→
M
∈
ℤ
≥
2
55
52
54
biimtrrid
⊢
M
∈
ℕ
→
¬
M
=
1
→
M
∈
ℤ
≥
2
56
55
3ad2ant2
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
M
=
1
→
M
∈
ℤ
≥
2
57
56
com12
⊢
¬
M
=
1
→
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
M
∈
ℤ
≥
2
58
57
adantr
⊢
¬
M
=
1
∧
¬
2
∥
M
→
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
M
∈
ℤ
≥
2
59
58
impcom
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
M
∈
ℤ
≥
2
60
simprr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
¬
2
∥
M
61
lighneallem4b
⊢
P
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
2
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
≥
2
62
51
59
60
61
syl3anc
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
≥
2
63
2
3ad2ant3
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
N
∈
ℕ
0
64
63
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
N
∈
ℕ
0
65
dvdsprmpweqnn
⊢
2
∈
ℙ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
∈
ℤ
≥
2
∧
N
∈
ℕ
0
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
∃
n
∈
ℕ
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
66
47
62
64
65
mp3an2i
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
∃
n
∈
ℕ
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
67
2z
⊢
2
∈
ℤ
68
67
a1i
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
2
∈
ℤ
69
iddvdsexp
⊢
2
∈
ℤ
∧
n
∈
ℕ
→
2
∥
2
n
70
68
69
sylan
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
2
∥
2
n
71
breq2
⊢
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
2
∥
∑
k
=
0
M
−
1
−
1
k
P
k
↔
2
∥
2
n
72
71
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
2
∥
∑
k
=
0
M
−
1
−
1
k
P
k
↔
2
∥
2
n
73
fzfid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
0
…
M
−
1
∈
Fin
74
28
a1i
⊢
P
∈
ℕ
→
−
1
∈
ℤ
75
74
31
sylan
⊢
P
∈
ℕ
∧
k
∈
ℕ
0
→
−
1
k
∈
ℤ
76
nnnn0
⊢
P
∈
ℕ
→
P
∈
ℕ
0
77
76
adantr
⊢
P
∈
ℕ
∧
k
∈
ℕ
0
→
P
∈
ℕ
0
78
simpr
⊢
P
∈
ℕ
∧
k
∈
ℕ
0
→
k
∈
ℕ
0
79
77
78
nn0expcld
⊢
P
∈
ℕ
∧
k
∈
ℕ
0
→
P
k
∈
ℕ
0
80
79
nn0zd
⊢
P
∈
ℕ
∧
k
∈
ℕ
0
→
P
k
∈
ℤ
81
75
80
zmulcld
⊢
P
∈
ℕ
∧
k
∈
ℕ
0
→
−
1
k
P
k
∈
ℤ
82
81
ex
⊢
P
∈
ℕ
→
k
∈
ℕ
0
→
−
1
k
P
k
∈
ℤ
83
6
7
82
3syl
⊢
P
∈
ℙ
∖
2
→
k
∈
ℕ
0
→
−
1
k
P
k
∈
ℤ
84
83
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
k
∈
ℕ
0
→
−
1
k
P
k
∈
ℤ
85
84
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
k
∈
ℕ
0
→
−
1
k
P
k
∈
ℤ
86
85
30
impel
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
∧
k
∈
0
…
M
−
1
→
−
1
k
P
k
∈
ℤ
87
nn0z
⊢
k
∈
ℕ
0
→
k
∈
ℤ
88
m1expcl2
⊢
k
∈
ℤ
→
−
1
k
∈
−
1
1
89
87
88
syl
⊢
k
∈
ℕ
0
→
−
1
k
∈
−
1
1
90
ovex
⊢
−
1
k
∈
V
91
90
elpr
⊢
−
1
k
∈
−
1
1
↔
−
1
k
=
−
1
∨
−
1
k
=
1
92
n2dvdsm1
⊢
¬
2
∥
-1
93
breq2
⊢
−
1
k
=
−
1
→
2
∥
−
1
k
↔
2
∥
-1
94
92
93
mtbiri
⊢
−
1
k
=
−
1
→
¬
2
∥
−
1
k
95
n2dvds1
⊢
¬
2
∥
1
96
breq2
⊢
−
1
k
=
1
→
2
∥
−
1
k
↔
2
∥
1
97
95
96
mtbiri
⊢
−
1
k
=
1
→
¬
2
∥
−
1
k
98
94
97
jaoi
⊢
−
1
k
=
−
1
∨
−
1
k
=
1
→
¬
2
∥
−
1
k
99
98
a1d
⊢
−
1
k
=
−
1
∨
−
1
k
=
1
→
k
∈
ℕ
0
→
¬
2
∥
−
1
k
100
91
99
sylbi
⊢
−
1
k
∈
−
1
1
→
k
∈
ℕ
0
→
¬
2
∥
−
1
k
101
89
100
mpcom
⊢
k
∈
ℕ
0
→
¬
2
∥
−
1
k
102
101
adantl
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
¬
2
∥
−
1
k
103
elnn0
⊢
k
∈
ℕ
0
↔
k
∈
ℕ
∨
k
=
0
104
oddn2prm
⊢
P
∈
ℙ
∖
2
→
¬
2
∥
P
105
104
adantr
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
→
¬
2
∥
P
106
simpr
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
→
k
∈
ℕ
107
prmdvdsexp
⊢
2
∈
ℙ
∧
P
∈
ℤ
∧
k
∈
ℕ
→
2
∥
P
k
↔
2
∥
P
108
47
34
106
107
mp3an2ani
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
→
2
∥
P
k
↔
2
∥
P
109
105
108
mtbird
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
→
¬
2
∥
P
k
110
109
expcom
⊢
k
∈
ℕ
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
111
oveq2
⊢
k
=
0
→
P
k
=
P
0
112
111
adantr
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
P
k
=
P
0
113
9
adantl
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
P
∈
ℂ
114
113
exp0d
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
P
0
=
1
115
112
114
eqtrd
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
P
k
=
1
116
115
breq2d
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
2
∥
P
k
↔
2
∥
1
117
95
116
mtbiri
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
118
117
ex
⊢
k
=
0
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
119
110
118
jaoi
⊢
k
∈
ℕ
∨
k
=
0
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
120
103
119
sylbi
⊢
k
∈
ℕ
0
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
121
120
impcom
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
¬
2
∥
P
k
122
ioran
⊢
¬
2
∥
−
1
k
∨
2
∥
P
k
↔
¬
2
∥
−
1
k
∧
¬
2
∥
P
k
123
102
121
122
sylanbrc
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
¬
2
∥
−
1
k
∨
2
∥
P
k
124
28
31
mpan
⊢
k
∈
ℕ
0
→
−
1
k
∈
ℤ
125
124
adantl
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
−
1
k
∈
ℤ
126
6
7
76
3syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
0
127
126
adantr
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
P
∈
ℕ
0
128
simpr
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
k
∈
ℕ
0
129
127
128
nn0expcld
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
P
k
∈
ℕ
0
130
129
nn0zd
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
P
k
∈
ℤ
131
euclemma
⊢
2
∈
ℙ
∧
−
1
k
∈
ℤ
∧
P
k
∈
ℤ
→
2
∥
−
1
k
P
k
↔
2
∥
−
1
k
∨
2
∥
P
k
132
47
125
130
131
mp3an2i
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
2
∥
−
1
k
P
k
↔
2
∥
−
1
k
∨
2
∥
P
k
133
123
132
mtbird
⊢
P
∈
ℙ
∖
2
∧
k
∈
ℕ
0
→
¬
2
∥
−
1
k
P
k
134
133
ex
⊢
P
∈
ℙ
∖
2
→
k
∈
ℕ
0
→
¬
2
∥
−
1
k
P
k
135
134
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
k
∈
ℕ
0
→
¬
2
∥
−
1
k
P
k
136
135
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
k
∈
ℕ
0
→
¬
2
∥
−
1
k
P
k
137
136
30
impel
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
∧
k
∈
0
…
M
−
1
→
¬
2
∥
−
1
k
P
k
138
nnm1nn0
⊢
M
∈
ℕ
→
M
−
1
∈
ℕ
0
139
hashfz0
⊢
M
−
1
∈
ℕ
0
→
0
…
M
−
1
=
M
-
1
+
1
140
138
139
syl
⊢
M
∈
ℕ
→
0
…
M
−
1
=
M
-
1
+
1
141
nncn
⊢
M
∈
ℕ
→
M
∈
ℂ
142
npcan1
⊢
M
∈
ℂ
→
M
-
1
+
1
=
M
143
141
142
syl
⊢
M
∈
ℕ
→
M
-
1
+
1
=
M
144
140
143
eqtr2d
⊢
M
∈
ℕ
→
M
=
0
…
M
−
1
145
144
3ad2ant2
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
M
=
0
…
M
−
1
146
145
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
→
M
=
0
…
M
−
1
147
146
breq2d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
→
2
∥
M
↔
2
∥
0
…
M
−
1
148
147
notbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
→
¬
2
∥
M
↔
¬
2
∥
0
…
M
−
1
149
148
biimpd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
→
¬
2
∥
M
→
¬
2
∥
0
…
M
−
1
150
149
impr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
¬
2
∥
0
…
M
−
1
151
150
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
¬
2
∥
0
…
M
−
1
152
73
86
137
151
oddsumodd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
¬
2
∥
∑
k
=
0
M
−
1
−
1
k
P
k
153
152
pm2.21d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
2
∥
∑
k
=
0
M
−
1
−
1
k
P
k
→
M
=
1
154
153
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
2
∥
∑
k
=
0
M
−
1
−
1
k
P
k
→
M
=
1
155
72
154
sylbird
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
∧
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
2
∥
2
n
→
M
=
1
156
155
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
2
∥
2
n
→
M
=
1
157
70
156
mpid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
∧
n
∈
ℕ
→
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
M
=
1
158
157
rexlimdva
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
∃
n
∈
ℕ
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
n
→
M
=
1
159
66
158
syld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
M
=
1
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
160
159
exp32
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
M
=
1
→
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
161
160
com12
⊢
¬
M
=
1
→
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
162
161
impd
⊢
¬
M
=
1
→
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
163
46
162
pm2.61i
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
164
163
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
∧
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
2
N
→
M
=
1
165
45
164
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
∧
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
∑
k
=
0
M
−
1
−
1
k
P
k
∥
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
→
M
=
1
166
43
165
mpd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
∧
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
M
=
1
167
166
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
P
+
1
∑
k
=
0
M
−
1
−
1
k
P
k
=
2
N
→
M
=
1
168
22
167
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
P
M
+
1
=
2
N
→
M
=
1
169
17
168
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
M
→
2
N
−
1
=
P
M
→
M
=
1
170
169
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
2
∥
M
→
2
N
−
1
=
P
M
→
M
=
1
171
170
adantld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
2
∥
N
∧
¬
2
∥
M
→
2
N
−
1
=
P
M
→
M
=
1
172
171
3imp
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
N
∧
¬
2
∥
M
∧
2
N
−
1
=
P
M
→
M
=
1