Metamath Proof Explorer


Theorem oddsumodd

Description: If every term in a sum with an odd number of terms is odd, then the sum is odd. (Contributed by AV, 14-Aug-2021)

Ref Expression
Hypotheses evensumodd.a φAFin
evensumodd.b φkAB
evensumodd.o φkA¬2B
oddsumodd.a φ¬2A
Assertion oddsumodd φ¬2kAB

Proof

Step Hyp Ref Expression
1 evensumodd.a φAFin
2 evensumodd.b φkAB
3 evensumodd.o φkA¬2B
4 oddsumodd.a φ¬2A
5 1 2 3 sumodd φ2A2kAB
6 4 5 mtbid φ¬2kAB