Metamath Proof Explorer


Theorem lighneallem4

Description: Lemma 3 for lighneal . (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion lighneallem4 ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) ) → 𝑀 = 1 )

Proof

Step Hyp Ref Expression
1 2cnd ( 𝑁 ∈ ℕ → 2 ∈ ℂ )
2 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
3 1 2 expcld ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℂ )
4 3 3ad2ant3 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ↑ 𝑁 ) ∈ ℂ )
5 1cnd ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 1 ∈ ℂ )
6 eldifi ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ )
7 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
8 nncn ( 𝑃 ∈ ℕ → 𝑃 ∈ ℂ )
9 6 7 8 3syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℂ )
10 9 3ad2ant1 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℂ )
11 nnnn0 ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 )
12 11 3ad2ant2 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ0 )
13 10 12 expcld ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃𝑀 ) ∈ ℂ )
14 4 5 13 3jca ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑃𝑀 ) ∈ ℂ ) )
15 14 adantr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑃𝑀 ) ∈ ℂ ) )
16 subadd2 ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑃𝑀 ) ∈ ℂ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) ↔ ( ( 𝑃𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) ) )
17 15 16 syl ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) ↔ ( ( 𝑃𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) ) )
18 10 adantr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑃 ∈ ℂ )
19 simpl2 ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑀 ∈ ℕ )
20 simpr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ¬ 2 ∥ 𝑀 )
21 18 19 20 oddpwp1fsum ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝑃𝑀 ) + 1 ) = ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) )
22 21 eqeq1d ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝑃𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) ↔ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) )
23 peano2nn ( 𝑃 ∈ ℕ → ( 𝑃 + 1 ) ∈ ℕ )
24 23 nnzd ( 𝑃 ∈ ℕ → ( 𝑃 + 1 ) ∈ ℤ )
25 6 7 24 3syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 + 1 ) ∈ ℤ )
26 25 3ad2ant1 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 + 1 ) ∈ ℤ )
27 fzfid ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin )
28 neg1z - 1 ∈ ℤ
29 28 a1i ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → - 1 ∈ ℤ )
30 elfznn0 ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ℕ0 )
31 zexpcl ( ( - 1 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ )
32 29 30 31 syl2an ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( - 1 ↑ 𝑘 ) ∈ ℤ )
33 nnz ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ )
34 6 7 33 3syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℤ )
35 34 3ad2ant1 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℤ )
36 zexpcl ( ( 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃𝑘 ) ∈ ℤ )
37 35 30 36 syl2an ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃𝑘 ) ∈ ℤ )
38 32 37 zmulcld ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ )
39 27 38 fsumzcl ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ )
40 26 39 jca ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 + 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) )
41 40 ad2antrr ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( ( 𝑃 + 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) )
42 dvdsmul2 ( ( ( 𝑃 + 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) )
43 41 42 syl ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) )
44 breq2 ( ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) ↔ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) ) )
45 44 adantl ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) ↔ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) ) )
46 2a1 ( 𝑀 = 1 → ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) )
47 2prm 2 ∈ ℙ
48 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
49 6 48 syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ ‘ 2 ) )
50 49 3ad2ant1 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ( ℤ ‘ 2 ) )
51 50 adantr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 𝑃 ∈ ( ℤ ‘ 2 ) )
52 df-ne ( 𝑀 ≠ 1 ↔ ¬ 𝑀 = 1 )
53 eluz2b3 ( 𝑀 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≠ 1 ) )
54 53 simplbi2 ( 𝑀 ∈ ℕ → ( 𝑀 ≠ 1 → 𝑀 ∈ ( ℤ ‘ 2 ) ) )
55 52 54 syl5bir ( 𝑀 ∈ ℕ → ( ¬ 𝑀 = 1 → 𝑀 ∈ ( ℤ ‘ 2 ) ) )
56 55 3ad2ant2 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑀 = 1 → 𝑀 ∈ ( ℤ ‘ 2 ) ) )
57 56 com12 ( ¬ 𝑀 = 1 → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ( ℤ ‘ 2 ) ) )
58 57 adantr ( ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ( ℤ ‘ 2 ) ) )
59 58 impcom ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 𝑀 ∈ ( ℤ ‘ 2 ) )
60 simprr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ¬ 2 ∥ 𝑀 )
61 lighneallem4b ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ( ℤ ‘ 2 ) )
62 51 59 60 61 syl3anc ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ( ℤ ‘ 2 ) )
63 2 3ad2ant3 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 )
64 63 adantr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 𝑁 ∈ ℕ0 )
65 dvdsprmpweqnn ( ( 2 ∈ ℙ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) ) )
66 47 62 64 65 mp3an2i ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) ) )
67 2z 2 ∈ ℤ
68 67 a1i ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 2 ∈ ℤ )
69 iddvdsexp ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑛 ) )
70 68 69 sylan ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑛 ) )
71 breq2 ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ↔ 2 ∥ ( 2 ↑ 𝑛 ) ) )
72 71 adantl ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ↔ 2 ∥ ( 2 ↑ 𝑛 ) ) )
73 fzfid ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin )
74 28 a1i ( 𝑃 ∈ ℕ → - 1 ∈ ℤ )
75 74 31 sylan ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ )
76 nnnn0 ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 )
77 76 adantr ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 )
78 simpr ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
79 77 78 nn0expcld ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃𝑘 ) ∈ ℕ0 )
80 79 nn0zd ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃𝑘 ) ∈ ℤ )
81 75 80 zmulcld ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ )
82 81 ex ( 𝑃 ∈ ℕ → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) )
83 6 7 82 3syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) )
84 83 3ad2ant1 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) )
85 84 ad2antrr ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ ) )
86 85 30 impel ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∈ ℤ )
87 nn0z ( 𝑘 ∈ ℕ0𝑘 ∈ ℤ )
88 m1expcl2 ( 𝑘 ∈ ℤ → ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } )
89 87 88 syl ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } )
90 ovex ( - 1 ↑ 𝑘 ) ∈ V
91 90 elpr ( ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } ↔ ( ( - 1 ↑ 𝑘 ) = - 1 ∨ ( - 1 ↑ 𝑘 ) = 1 ) )
92 n2dvdsm1 ¬ 2 ∥ - 1
93 breq2 ( ( - 1 ↑ 𝑘 ) = - 1 → ( 2 ∥ ( - 1 ↑ 𝑘 ) ↔ 2 ∥ - 1 ) )
94 92 93 mtbiri ( ( - 1 ↑ 𝑘 ) = - 1 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) )
95 n2dvds1 ¬ 2 ∥ 1
96 breq2 ( ( - 1 ↑ 𝑘 ) = 1 → ( 2 ∥ ( - 1 ↑ 𝑘 ) ↔ 2 ∥ 1 ) )
97 95 96 mtbiri ( ( - 1 ↑ 𝑘 ) = 1 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) )
98 94 97 jaoi ( ( ( - 1 ↑ 𝑘 ) = - 1 ∨ ( - 1 ↑ 𝑘 ) = 1 ) → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) )
99 98 a1d ( ( ( - 1 ↑ 𝑘 ) = - 1 ∨ ( - 1 ↑ 𝑘 ) = 1 ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) )
100 91 99 sylbi ( ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) )
101 89 100 mpcom ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) )
102 101 adantl ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) )
103 elnn0 ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) )
104 oddn2prm ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑃 )
105 104 adantr ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → ¬ 2 ∥ 𝑃 )
106 simpr ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
107 prmdvdsexp ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( 2 ∥ ( 𝑃𝑘 ) ↔ 2 ∥ 𝑃 ) )
108 47 34 106 107 mp3an2ani ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → ( 2 ∥ ( 𝑃𝑘 ) ↔ 2 ∥ 𝑃 ) )
109 105 108 mtbird ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → ¬ 2 ∥ ( 𝑃𝑘 ) )
110 109 expcom ( 𝑘 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃𝑘 ) ) )
111 oveq2 ( 𝑘 = 0 → ( 𝑃𝑘 ) = ( 𝑃 ↑ 0 ) )
112 111 adantr ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃𝑘 ) = ( 𝑃 ↑ 0 ) )
113 9 adantl ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℂ )
114 113 exp0d ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ↑ 0 ) = 1 )
115 112 114 eqtrd ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃𝑘 ) = 1 )
116 115 breq2d ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∥ ( 𝑃𝑘 ) ↔ 2 ∥ 1 ) )
117 95 116 mtbiri ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 ∥ ( 𝑃𝑘 ) )
118 117 ex ( 𝑘 = 0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃𝑘 ) ) )
119 110 118 jaoi ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃𝑘 ) ) )
120 103 119 sylbi ( 𝑘 ∈ ℕ0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃𝑘 ) ) )
121 120 impcom ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( 𝑃𝑘 ) )
122 ioran ( ¬ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃𝑘 ) ) ↔ ( ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ∧ ¬ 2 ∥ ( 𝑃𝑘 ) ) )
123 102 121 122 sylanbrc ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃𝑘 ) ) )
124 28 31 mpan ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ ℤ )
125 124 adantl ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ )
126 6 7 76 3syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℕ0 )
127 126 adantr ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 )
128 simpr ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
129 127 128 nn0expcld ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃𝑘 ) ∈ ℕ0 )
130 129 nn0zd ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃𝑘 ) ∈ ℤ )
131 euclemma ( ( 2 ∈ ℙ ∧ ( - 1 ↑ 𝑘 ) ∈ ℤ ∧ ( 𝑃𝑘 ) ∈ ℤ ) → ( 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ↔ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃𝑘 ) ) ) )
132 47 125 130 131 mp3an2i ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ↔ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃𝑘 ) ) ) )
133 123 132 mtbird ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) )
134 133 ex ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) )
135 134 3ad2ant1 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) )
136 135 ad2antrr ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) )
137 136 30 impel ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) )
138 nnm1nn0 ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 )
139 hashfz0 ( ( 𝑀 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) )
140 138 139 syl ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) )
141 nncn ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ )
142 npcan1 ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 )
143 141 142 syl ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 )
144 140 143 eqtr2d ( 𝑀 ∈ ℕ → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) )
145 144 3ad2ant2 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) )
146 145 adantr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) )
147 146 breq2d ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → ( 2 ∥ 𝑀 ↔ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) )
148 147 notbid ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → ( ¬ 2 ∥ 𝑀 ↔ ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) )
149 148 biimpd ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → ( ¬ 2 ∥ 𝑀 → ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) )
150 149 impr ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) )
151 150 adantr ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) )
152 73 86 137 151 oddsumodd ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ¬ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) )
153 152 pm2.21d ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) → 𝑀 = 1 ) )
154 153 adantr ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) → 𝑀 = 1 ) )
155 72 154 sylbird ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) ) → ( 2 ∥ ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) )
156 155 ex ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) → ( 2 ∥ ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) ) )
157 70 156 mpid ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) )
158 157 rexlimdva ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ( ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) = ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) )
159 66 158 syld ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) )
160 159 exp32 ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑀 = 1 → ( ¬ 2 ∥ 𝑀 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) ) )
161 160 com12 ( ¬ 𝑀 = 1 → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 2 ∥ 𝑀 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) ) )
162 161 impd ( ¬ 𝑀 = 1 → ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) )
163 46 162 pm2.61i ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) )
164 163 adantr ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) )
165 45 164 sylbid ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) → 𝑀 = 1 ) )
166 43 165 mpd ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → 𝑀 = 1 )
167 166 ex ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃𝑘 ) ) ) = ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) )
168 22 167 sylbid ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝑃𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) )
169 17 168 sylbid ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) → 𝑀 = 1 ) )
170 169 ex ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) → 𝑀 = 1 ) ) )
171 170 adantld ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) → 𝑀 = 1 ) ) )
172 171 3imp ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃𝑀 ) ) → 𝑀 = 1 )