| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 | 1 2 | expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 5 |  | 1cnd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 6 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 7 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 8 |  | nncn | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℂ ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℂ ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 11 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℕ0 ) | 
						
							| 13 | 10 12 | expcld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 14 | 4 5 13 | 3jca | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 2 ↑ 𝑁 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑃 ↑ 𝑀 )  ∈  ℂ ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( 2 ↑ 𝑁 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑃 ↑ 𝑀 )  ∈  ℂ ) ) | 
						
							| 16 |  | subadd2 | ⊢ ( ( ( 2 ↑ 𝑁 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑃 ↑ 𝑀 )  ∈  ℂ )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( 𝑃 ↑ 𝑀 )  +  1 )  =  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( 𝑃 ↑ 𝑀 )  +  1 )  =  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 18 | 10 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  𝑃  ∈  ℂ ) | 
						
							| 19 |  | simpl2 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  𝑀  ∈  ℕ ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ¬  2  ∥  𝑀 ) | 
						
							| 21 | 18 19 20 | oddpwp1fsum | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( 𝑃 ↑ 𝑀 )  +  1 )  =  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 𝑃 ↑ 𝑀 )  +  1 )  =  ( 2 ↑ 𝑁 )  ↔  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 23 |  | peano2nn | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  +  1 )  ∈  ℕ ) | 
						
							| 24 | 23 | nnzd | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  +  1 )  ∈  ℤ ) | 
						
							| 25 | 6 7 24 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  +  1 )  ∈  ℤ ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  +  1 )  ∈  ℤ ) | 
						
							| 27 |  | fzfid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 0 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 28 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  - 1  ∈  ℤ ) | 
						
							| 30 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 31 |  | zexpcl | ⊢ ( ( - 1  ∈  ℤ  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 32 | 29 30 31 | syl2an | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 33 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 34 | 6 7 33 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℤ ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ℤ ) | 
						
							| 36 |  | zexpcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 37 | 35 30 36 | syl2an | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 38 | 32 37 | zmulcld | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 39 | 27 38 | fsumzcl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 40 | 26 39 | jca | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑃  +  1 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) )  →  ( ( 𝑃  +  1 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 42 |  | dvdsmul2 | ⊢ ( ( ( 𝑃  +  1 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 44 |  | breq2 | ⊢ ( ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  ↔  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  ↔  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 46 |  | 2a1 | ⊢ ( 𝑀  =  1  →  ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) ) | 
						
							| 47 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 48 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 49 | 6 48 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 50 | 49 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 52 |  | df-ne | ⊢ ( 𝑀  ≠  1  ↔  ¬  𝑀  =  1 ) | 
						
							| 53 |  | eluz2b3 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑀  ∈  ℕ  ∧  𝑀  ≠  1 ) ) | 
						
							| 54 | 53 | simplbi2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  ≠  1  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 55 | 52 54 | biimtrrid | ⊢ ( 𝑀  ∈  ℕ  →  ( ¬  𝑀  =  1  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 56 | 55 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  𝑀  =  1  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 57 | 56 | com12 | ⊢ ( ¬  𝑀  =  1  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 )  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 59 | 58 | impcom | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 60 |  | simprr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  ¬  2  ∥  𝑀 ) | 
						
							| 61 |  | lighneallem4b | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 62 | 51 59 60 61 | syl3anc | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 63 | 2 | 3ad2ant3 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 65 |  | dvdsprmpweqnn | ⊢ ( ( 2  ∈  ℙ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 66 | 47 62 64 65 | mp3an2i | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 67 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 68 | 67 | a1i | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  2  ∈  ℤ ) | 
						
							| 69 |  | iddvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℕ )  →  2  ∥  ( 2 ↑ 𝑛 ) ) | 
						
							| 70 | 68 69 | sylan | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  2  ∥  ( 2 ↑ 𝑛 ) ) | 
						
							| 71 |  | breq2 | ⊢ ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 )  →  ( 2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ↔  2  ∥  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 ) )  →  ( 2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ↔  2  ∥  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 73 |  | fzfid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ( 0 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 74 | 28 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  - 1  ∈  ℤ ) | 
						
							| 75 | 74 31 | sylan | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 76 |  | nnnn0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℕ0 ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  𝑃  ∈  ℕ0 ) | 
						
							| 78 |  | simpr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 79 | 77 78 | nn0expcld | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 80 | 79 | nn0zd | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 81 | 75 80 | zmulcld | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 82 | 81 | ex | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑘  ∈  ℕ0  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 83 | 6 7 82 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑘  ∈  ℕ0  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 84 | 83 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑘  ∈  ℕ0  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 85 | 84 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  ℕ0  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 86 | 85 30 | impel | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 87 |  | nn0z | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℤ ) | 
						
							| 88 |  | m1expcl2 | ⊢ ( 𝑘  ∈  ℤ  →  ( - 1 ↑ 𝑘 )  ∈  { - 1 ,  1 } ) | 
						
							| 89 | 87 88 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( - 1 ↑ 𝑘 )  ∈  { - 1 ,  1 } ) | 
						
							| 90 |  | ovex | ⊢ ( - 1 ↑ 𝑘 )  ∈  V | 
						
							| 91 | 90 | elpr | ⊢ ( ( - 1 ↑ 𝑘 )  ∈  { - 1 ,  1 }  ↔  ( ( - 1 ↑ 𝑘 )  =  - 1  ∨  ( - 1 ↑ 𝑘 )  =  1 ) ) | 
						
							| 92 |  | n2dvdsm1 | ⊢ ¬  2  ∥  - 1 | 
						
							| 93 |  | breq2 | ⊢ ( ( - 1 ↑ 𝑘 )  =  - 1  →  ( 2  ∥  ( - 1 ↑ 𝑘 )  ↔  2  ∥  - 1 ) ) | 
						
							| 94 | 92 93 | mtbiri | ⊢ ( ( - 1 ↑ 𝑘 )  =  - 1  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) | 
						
							| 95 |  | n2dvds1 | ⊢ ¬  2  ∥  1 | 
						
							| 96 |  | breq2 | ⊢ ( ( - 1 ↑ 𝑘 )  =  1  →  ( 2  ∥  ( - 1 ↑ 𝑘 )  ↔  2  ∥  1 ) ) | 
						
							| 97 | 95 96 | mtbiri | ⊢ ( ( - 1 ↑ 𝑘 )  =  1  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) | 
						
							| 98 | 94 97 | jaoi | ⊢ ( ( ( - 1 ↑ 𝑘 )  =  - 1  ∨  ( - 1 ↑ 𝑘 )  =  1 )  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) | 
						
							| 99 | 98 | a1d | ⊢ ( ( ( - 1 ↑ 𝑘 )  =  - 1  ∨  ( - 1 ↑ 𝑘 )  =  1 )  →  ( 𝑘  ∈  ℕ0  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) ) | 
						
							| 100 | 91 99 | sylbi | ⊢ ( ( - 1 ↑ 𝑘 )  ∈  { - 1 ,  1 }  →  ( 𝑘  ∈  ℕ0  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) ) | 
						
							| 101 | 89 100 | mpcom | ⊢ ( 𝑘  ∈  ℕ0  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ¬  2  ∥  ( - 1 ↑ 𝑘 ) ) | 
						
							| 103 |  | elnn0 | ⊢ ( 𝑘  ∈  ℕ0  ↔  ( 𝑘  ∈  ℕ  ∨  𝑘  =  0 ) ) | 
						
							| 104 |  | oddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  𝑃 ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ )  →  ¬  2  ∥  𝑃 ) | 
						
							| 106 |  | simpr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 107 |  | prmdvdsexp | ⊢ ( ( 2  ∈  ℙ  ∧  𝑃  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  ( 2  ∥  ( 𝑃 ↑ 𝑘 )  ↔  2  ∥  𝑃 ) ) | 
						
							| 108 | 47 34 106 107 | mp3an2ani | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ )  →  ( 2  ∥  ( 𝑃 ↑ 𝑘 )  ↔  2  ∥  𝑃 ) ) | 
						
							| 109 | 105 108 | mtbird | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 110 | 109 | expcom | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 111 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 113 | 9 | adantl | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑃  ∈  ℂ ) | 
						
							| 114 | 113 | exp0d | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 115 | 112 114 | eqtrd | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃 ↑ 𝑘 )  =  1 ) | 
						
							| 116 | 115 | breq2d | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2  ∥  ( 𝑃 ↑ 𝑘 )  ↔  2  ∥  1 ) ) | 
						
							| 117 | 95 116 | mtbiri | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 118 | 117 | ex | ⊢ ( 𝑘  =  0  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 119 | 110 118 | jaoi | ⊢ ( ( 𝑘  ∈  ℕ  ∨  𝑘  =  0 )  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 120 | 103 119 | sylbi | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 121 | 120 | impcom | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 122 |  | ioran | ⊢ ( ¬  ( 2  ∥  ( - 1 ↑ 𝑘 )  ∨  2  ∥  ( 𝑃 ↑ 𝑘 ) )  ↔  ( ¬  2  ∥  ( - 1 ↑ 𝑘 )  ∧  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 123 | 102 121 122 | sylanbrc | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ¬  ( 2  ∥  ( - 1 ↑ 𝑘 )  ∨  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 124 | 28 31 | mpan | ⊢ ( 𝑘  ∈  ℕ0  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 126 | 6 7 76 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℕ0 ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  𝑃  ∈  ℕ0 ) | 
						
							| 128 |  | simpr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 129 | 127 128 | nn0expcld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 130 | 129 | nn0zd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 131 |  | euclemma | ⊢ ( ( 2  ∈  ℙ  ∧  ( - 1 ↑ 𝑘 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑘 )  ∈  ℤ )  →  ( 2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ↔  ( 2  ∥  ( - 1 ↑ 𝑘 )  ∨  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 132 | 47 125 130 131 | mp3an2i | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ↔  ( 2  ∥  ( - 1 ↑ 𝑘 )  ∨  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 133 | 123 132 | mtbird | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑘  ∈  ℕ0 )  →  ¬  2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 134 | 133 | ex | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑘  ∈  ℕ0  →  ¬  2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 135 | 134 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑘  ∈  ℕ0  →  ¬  2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 136 | 135 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  ℕ0  →  ¬  2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 137 | 136 30 | impel | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ¬  2  ∥  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 138 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 139 |  | hashfz0 | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 140 | 138 139 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 141 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 142 |  | npcan1 | ⊢ ( 𝑀  ∈  ℂ  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 143 | 141 142 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 144 | 140 143 | eqtr2d | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  =  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 145 | 144 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  =  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑀  =  1 )  →  𝑀  =  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 147 | 146 | breq2d | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑀  =  1 )  →  ( 2  ∥  𝑀  ↔  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 148 | 147 | notbid | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑀  =  1 )  →  ( ¬  2  ∥  𝑀  ↔  ¬  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 149 | 148 | biimpd | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑀  =  1 )  →  ( ¬  2  ∥  𝑀  →  ¬  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 150 | 149 | impr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  ¬  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ¬  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 152 | 73 86 137 151 | oddsumodd | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ¬  2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 153 | 152 | pm2.21d | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ( 2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  →  𝑀  =  1 ) ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 ) )  →  ( 2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  →  𝑀  =  1 ) ) | 
						
							| 155 | 72 154 | sylbird | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 ) )  →  ( 2  ∥  ( 2 ↑ 𝑛 )  →  𝑀  =  1 ) ) | 
						
							| 156 | 155 | ex | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 )  →  ( 2  ∥  ( 2 ↑ 𝑛 )  →  𝑀  =  1 ) ) ) | 
						
							| 157 | 70 156 | mpid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  ∧  𝑛  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 )  →  𝑀  =  1 ) ) | 
						
							| 158 | 157 | rexlimdva | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  ( ∃ 𝑛  ∈  ℕ Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  =  ( 2 ↑ 𝑛 )  →  𝑀  =  1 ) ) | 
						
							| 159 | 66 158 | syld | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  𝑀  =  1  ∧  ¬  2  ∥  𝑀 ) )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) | 
						
							| 160 | 159 | exp32 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  𝑀  =  1  →  ( ¬  2  ∥  𝑀  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 161 | 160 | com12 | ⊢ ( ¬  𝑀  =  1  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  2  ∥  𝑀  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 162 | 161 | impd | ⊢ ( ¬  𝑀  =  1  →  ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) ) | 
						
							| 163 | 46 162 | pm2.61i | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) | 
						
							| 165 | 45 164 | sylbid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) )  ∥  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  →  𝑀  =  1 ) ) | 
						
							| 166 | 43 165 | mpd | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 ) )  →  𝑀  =  1 ) | 
						
							| 167 | 166 | ex | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 𝑃  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑃 ↑ 𝑘 ) ) )  =  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) | 
						
							| 168 | 22 167 | sylbid | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 𝑃 ↑ 𝑀 )  +  1 )  =  ( 2 ↑ 𝑁 )  →  𝑀  =  1 ) ) | 
						
							| 169 | 17 168 | sylbid | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 170 | 169 | ex | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  2  ∥  𝑀  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 171 | 170 | adantld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 172 | 171 | 3imp | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) |