| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 2 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 3 |
1 2
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 4 |
3
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 5 |
|
1cnd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 1 ∈ ℂ ) |
| 6 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 7 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 8 |
|
nncn |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℂ ) |
| 9 |
6 7 8
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℂ ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 11 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ0 ) |
| 13 |
10 12
|
expcld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
| 14 |
4 5 13
|
3jca |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) ) |
| 16 |
|
subadd2 |
⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( 𝑃 ↑ 𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( 𝑃 ↑ 𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) ) ) |
| 18 |
10
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑃 ∈ ℂ ) |
| 19 |
|
simpl2 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ¬ 2 ∥ 𝑀 ) |
| 21 |
18 19 20
|
oddpwp1fsum |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝑃 ↑ 𝑀 ) + 1 ) = ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) ↔ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) ) |
| 23 |
|
peano2nn |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 + 1 ) ∈ ℕ ) |
| 24 |
23
|
nnzd |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 + 1 ) ∈ ℤ ) |
| 25 |
6 7 24
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 + 1 ) ∈ ℤ ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 + 1 ) ∈ ℤ ) |
| 27 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 28 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 29 |
28
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → - 1 ∈ ℤ ) |
| 30 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 31 |
|
zexpcl |
⊢ ( ( - 1 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 32 |
29 30 31
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 33 |
|
nnz |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) |
| 34 |
6 7 33
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℤ ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℤ ) |
| 36 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 37 |
35 30 36
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 38 |
32 37
|
zmulcld |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) |
| 39 |
27 38
|
fsumzcl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) |
| 40 |
26 39
|
jca |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 + 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( ( 𝑃 + 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) ) |
| 42 |
|
dvdsmul2 |
⊢ ( ( ( 𝑃 + 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 43 |
41 42
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 44 |
|
breq2 |
⊢ ( ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ↔ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ↔ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) ) ) |
| 46 |
|
2a1 |
⊢ ( 𝑀 = 1 → ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) ) |
| 47 |
|
2prm |
⊢ 2 ∈ ℙ |
| 48 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 49 |
6 48
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 52 |
|
df-ne |
⊢ ( 𝑀 ≠ 1 ↔ ¬ 𝑀 = 1 ) |
| 53 |
|
eluz2b3 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≠ 1 ) ) |
| 54 |
53
|
simplbi2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ≠ 1 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 55 |
52 54
|
biimtrrid |
⊢ ( 𝑀 ∈ ℕ → ( ¬ 𝑀 = 1 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 56 |
55
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑀 = 1 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 57 |
56
|
com12 |
⊢ ( ¬ 𝑀 = 1 → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 59 |
58
|
impcom |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 60 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ¬ 2 ∥ 𝑀 ) |
| 61 |
|
lighneallem4b |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 62 |
51 59 60 61
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 63 |
2
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 𝑁 ∈ ℕ0 ) |
| 65 |
|
dvdsprmpweqnn |
⊢ ( ( 2 ∈ ℙ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 66 |
47 62 64 65
|
mp3an2i |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 67 |
|
2z |
⊢ 2 ∈ ℤ |
| 68 |
67
|
a1i |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → 2 ∈ ℤ ) |
| 69 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑛 ) ) |
| 70 |
68 69
|
sylan |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑛 ) ) |
| 71 |
|
breq2 |
⊢ ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ↔ 2 ∥ ( 2 ↑ 𝑛 ) ) ) |
| 72 |
71
|
adantl |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ↔ 2 ∥ ( 2 ↑ 𝑛 ) ) ) |
| 73 |
|
fzfid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 74 |
28
|
a1i |
⊢ ( 𝑃 ∈ ℕ → - 1 ∈ ℤ ) |
| 75 |
74 31
|
sylan |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 76 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 ) |
| 78 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 79 |
77 78
|
nn0expcld |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ0 ) |
| 80 |
79
|
nn0zd |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 81 |
75 80
|
zmulcld |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) |
| 82 |
81
|
ex |
⊢ ( 𝑃 ∈ ℕ → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) ) |
| 83 |
6 7 82
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) ) |
| 84 |
83
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) ) |
| 85 |
84
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) ) |
| 86 |
85 30
|
impel |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∈ ℤ ) |
| 87 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
| 88 |
|
m1expcl2 |
⊢ ( 𝑘 ∈ ℤ → ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } ) |
| 89 |
87 88
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } ) |
| 90 |
|
ovex |
⊢ ( - 1 ↑ 𝑘 ) ∈ V |
| 91 |
90
|
elpr |
⊢ ( ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } ↔ ( ( - 1 ↑ 𝑘 ) = - 1 ∨ ( - 1 ↑ 𝑘 ) = 1 ) ) |
| 92 |
|
n2dvdsm1 |
⊢ ¬ 2 ∥ - 1 |
| 93 |
|
breq2 |
⊢ ( ( - 1 ↑ 𝑘 ) = - 1 → ( 2 ∥ ( - 1 ↑ 𝑘 ) ↔ 2 ∥ - 1 ) ) |
| 94 |
92 93
|
mtbiri |
⊢ ( ( - 1 ↑ 𝑘 ) = - 1 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) |
| 95 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
| 96 |
|
breq2 |
⊢ ( ( - 1 ↑ 𝑘 ) = 1 → ( 2 ∥ ( - 1 ↑ 𝑘 ) ↔ 2 ∥ 1 ) ) |
| 97 |
95 96
|
mtbiri |
⊢ ( ( - 1 ↑ 𝑘 ) = 1 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) |
| 98 |
94 97
|
jaoi |
⊢ ( ( ( - 1 ↑ 𝑘 ) = - 1 ∨ ( - 1 ↑ 𝑘 ) = 1 ) → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) |
| 99 |
98
|
a1d |
⊢ ( ( ( - 1 ↑ 𝑘 ) = - 1 ∨ ( - 1 ↑ 𝑘 ) = 1 ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) ) |
| 100 |
91 99
|
sylbi |
⊢ ( ( - 1 ↑ 𝑘 ) ∈ { - 1 , 1 } → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) ) |
| 101 |
89 100
|
mpcom |
⊢ ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ) |
| 103 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 104 |
|
oddn2prm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑃 ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → ¬ 2 ∥ 𝑃 ) |
| 106 |
|
simpr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 107 |
|
prmdvdsexp |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 ∥ 𝑃 ) ) |
| 108 |
47 34 106 107
|
mp3an2ani |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 ∥ 𝑃 ) ) |
| 109 |
105 108
|
mtbird |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
| 110 |
109
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 111 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 113 |
9
|
adantl |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℂ ) |
| 114 |
113
|
exp0d |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 115 |
112 114
|
eqtrd |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ↑ 𝑘 ) = 1 ) |
| 116 |
115
|
breq2d |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 ∥ 1 ) ) |
| 117 |
95 116
|
mtbiri |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
| 118 |
117
|
ex |
⊢ ( 𝑘 = 0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 119 |
110 118
|
jaoi |
⊢ ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 120 |
103 119
|
sylbi |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 121 |
120
|
impcom |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
| 122 |
|
ioran |
⊢ ( ¬ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ↔ ( ¬ 2 ∥ ( - 1 ↑ 𝑘 ) ∧ ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 123 |
102 121 122
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 124 |
28 31
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 126 |
6 7 76
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℕ0 ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 ) |
| 128 |
|
simpr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 129 |
127 128
|
nn0expcld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ0 ) |
| 130 |
129
|
nn0zd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 131 |
|
euclemma |
⊢ ( ( 2 ∈ ℙ ∧ ( - 1 ↑ 𝑘 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) → ( 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 132 |
47 125 130 131
|
mp3an2i |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( - 1 ↑ 𝑘 ) ∨ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 133 |
123 132
|
mtbird |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) |
| 134 |
133
|
ex |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 135 |
134
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 136 |
135
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 137 |
136 30
|
impel |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ¬ 2 ∥ ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) |
| 138 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 139 |
|
hashfz0 |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 140 |
138 139
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 141 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 142 |
|
npcan1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 143 |
141 142
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 144 |
140 143
|
eqtr2d |
⊢ ( 𝑀 ∈ ℕ → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 145 |
144
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 146 |
145
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 147 |
146
|
breq2d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → ( 2 ∥ 𝑀 ↔ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) ) |
| 148 |
147
|
notbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → ( ¬ 2 ∥ 𝑀 ↔ ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) ) |
| 149 |
148
|
biimpd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑀 = 1 ) → ( ¬ 2 ∥ 𝑀 → ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) ) |
| 150 |
149
|
impr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 151 |
150
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ¬ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 152 |
73 86 137 151
|
oddsumodd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ¬ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) |
| 153 |
152
|
pm2.21d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) → 𝑀 = 1 ) ) |
| 154 |
153
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) ) → ( 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) → 𝑀 = 1 ) ) |
| 155 |
72 154
|
sylbird |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) ) → ( 2 ∥ ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) ) |
| 156 |
155
|
ex |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) → ( 2 ∥ ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) ) ) |
| 157 |
70 156
|
mpid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) ) |
| 158 |
157
|
rexlimdva |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ( ∃ 𝑛 ∈ ℕ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) = ( 2 ↑ 𝑛 ) → 𝑀 = 1 ) ) |
| 159 |
66 158
|
syld |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) |
| 160 |
159
|
exp32 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑀 = 1 → ( ¬ 2 ∥ 𝑀 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) ) ) |
| 161 |
160
|
com12 |
⊢ ( ¬ 𝑀 = 1 → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 2 ∥ 𝑀 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) ) ) |
| 162 |
161
|
impd |
⊢ ( ¬ 𝑀 = 1 → ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) ) |
| 163 |
46 162
|
pm2.61i |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) |
| 164 |
163
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) |
| 165 |
45 164
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ∥ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) → 𝑀 = 1 ) ) |
| 166 |
43 165
|
mpd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) ) → 𝑀 = 1 ) |
| 167 |
166
|
ex |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝑃 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝑃 ↑ 𝑘 ) ) ) = ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) |
| 168 |
22 167
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) + 1 ) = ( 2 ↑ 𝑁 ) → 𝑀 = 1 ) ) |
| 169 |
17 168
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 170 |
169
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 171 |
170
|
adantld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 172 |
171
|
3imp |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |