| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 2 ∈ ℤ ) |
| 3 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 4 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 5 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 6 |
|
zexpcl |
⊢ ( ( - 1 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 7 |
4 5 6
|
sylancr |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( - 1 ↑ 𝑘 ) ∈ ℤ ) |
| 9 |
|
eluzge2nn0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ0 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℕ0 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 12 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 13 |
11 12
|
nn0expcld |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℕ0 ) |
| 14 |
13
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
| 15 |
8 14
|
zmulcld |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℤ ) |
| 16 |
3 15
|
fsumzcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℤ ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℤ ) |
| 18 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 19 |
|
3z |
⊢ 3 ∈ ℤ |
| 20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 3 ∈ ℤ ) |
| 21 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℤ ) |
| 22 |
21
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 23 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀 ) ) |
| 24 |
|
2re |
⊢ 2 ∈ ℝ |
| 25 |
24
|
a1i |
⊢ ( 𝑀 ∈ ℤ → 2 ∈ ℝ ) |
| 26 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 27 |
25 26
|
leloed |
⊢ ( 𝑀 ∈ ℤ → ( 2 ≤ 𝑀 ↔ ( 2 < 𝑀 ∨ 2 = 𝑀 ) ) ) |
| 28 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 < 𝑀 ↔ ( 2 + 1 ) ≤ 𝑀 ) ) |
| 29 |
1 28
|
mpan |
⊢ ( 𝑀 ∈ ℤ → ( 2 < 𝑀 ↔ ( 2 + 1 ) ≤ 𝑀 ) ) |
| 30 |
29
|
biimpd |
⊢ ( 𝑀 ∈ ℤ → ( 2 < 𝑀 → ( 2 + 1 ) ≤ 𝑀 ) ) |
| 31 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 32 |
31
|
breq1i |
⊢ ( 3 ≤ 𝑀 ↔ ( 2 + 1 ) ≤ 𝑀 ) |
| 33 |
30 32
|
imbitrrdi |
⊢ ( 𝑀 ∈ ℤ → ( 2 < 𝑀 → 3 ≤ 𝑀 ) ) |
| 34 |
33
|
a1i |
⊢ ( ¬ 2 ∥ 𝑀 → ( 𝑀 ∈ ℤ → ( 2 < 𝑀 → 3 ≤ 𝑀 ) ) ) |
| 35 |
34
|
com13 |
⊢ ( 2 < 𝑀 → ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) ) |
| 36 |
|
z2even |
⊢ 2 ∥ 2 |
| 37 |
|
breq2 |
⊢ ( 2 = 𝑀 → ( 2 ∥ 2 ↔ 2 ∥ 𝑀 ) ) |
| 38 |
36 37
|
mpbii |
⊢ ( 2 = 𝑀 → 2 ∥ 𝑀 ) |
| 39 |
38
|
pm2.24d |
⊢ ( 2 = 𝑀 → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) |
| 40 |
39
|
a1d |
⊢ ( 2 = 𝑀 → ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) ) |
| 41 |
35 40
|
jaoi |
⊢ ( ( 2 < 𝑀 ∨ 2 = 𝑀 ) → ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) ) |
| 42 |
41
|
com12 |
⊢ ( 𝑀 ∈ ℤ → ( ( 2 < 𝑀 ∨ 2 = 𝑀 ) → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) ) |
| 43 |
27 42
|
sylbid |
⊢ ( 𝑀 ∈ ℤ → ( 2 ≤ 𝑀 → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) ) |
| 44 |
43
|
imp |
⊢ ( ( 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀 ) → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) |
| 45 |
44
|
3adant1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀 ) → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) |
| 46 |
23 45
|
sylbi |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑀 → 3 ≤ 𝑀 ) ) |
| 47 |
46
|
imp |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 3 ≤ 𝑀 ) |
| 48 |
47
|
3adant1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 3 ≤ 𝑀 ) |
| 49 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤ 𝑀 ) ) |
| 50 |
20 22 48 49
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) |
| 51 |
|
eluzelcn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℂ ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 𝐴 ∈ ℂ ) |
| 53 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
| 54 |
53
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 55 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ¬ 2 ∥ 𝑀 ) |
| 56 |
52 54 55
|
oddpwp1fsum |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝐴 ↑ 𝑀 ) + 1 ) = ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 57 |
56
|
eqcomd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) |
| 58 |
|
eluzge2nn0 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ0 ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑀 ∈ ℕ0 ) |
| 60 |
10 59
|
nn0expcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℕ0 ) |
| 61 |
60
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 62 |
|
peano2cn |
⊢ ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℂ ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℂ ) |
| 64 |
63
|
3adant3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℂ ) |
| 65 |
17
|
zcnd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 66 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
| 67 |
66
|
peano2nnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ∈ ℕ ) |
| 68 |
67
|
nncnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
| 69 |
67
|
nnne0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ≠ 0 ) |
| 70 |
68 69
|
jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) ∈ ℂ ∧ ( 𝐴 + 1 ) ≠ 0 ) ) |
| 71 |
70
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝐴 + 1 ) ∈ ℂ ∧ ( 𝐴 + 1 ) ≠ 0 ) ) |
| 72 |
|
divmul |
⊢ ( ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℂ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ∧ ( ( 𝐴 + 1 ) ∈ ℂ ∧ ( 𝐴 + 1 ) ≠ 0 ) ) → ( ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ↔ ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) ) |
| 73 |
64 65 71 72
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ↔ ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) ) |
| 74 |
57 73
|
mpbird |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 75 |
74
|
eqcomd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) |
| 76 |
|
lighneallem4a |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → 2 ≤ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 77 |
18 50 75 76
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → 2 ≤ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 78 |
|
eluz2 |
⊢ ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℤ ∧ 2 ≤ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 79 |
2 17 77 78
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ¬ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |