| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  2  ∈  ℤ ) | 
						
							| 3 |  | fzfid | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 0 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 4 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 5 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 6 |  | zexpcl | ⊢ ( ( - 1  ∈  ℤ  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( - 1 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 9 |  | eluzge2nn0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 | 5 | adantl | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 13 | 11 12 | nn0expcld | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0zd | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 15 | 8 14 | zmulcld | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 16 | 3 15 | fsumzcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℤ ) | 
						
							| 18 |  | simp1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 19 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  3  ∈  ℤ ) | 
						
							| 21 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ∈  ℤ ) | 
						
							| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 23 |  | eluz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  2  ≤  𝑀 ) ) | 
						
							| 24 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  2  ∈  ℝ ) | 
						
							| 26 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 27 | 25 26 | leloed | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  ≤  𝑀  ↔  ( 2  <  𝑀  ∨  2  =  𝑀 ) ) ) | 
						
							| 28 |  | zltp1le | ⊢ ( ( 2  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 2  <  𝑀  ↔  ( 2  +  1 )  ≤  𝑀 ) ) | 
						
							| 29 | 1 28 | mpan | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  <  𝑀  ↔  ( 2  +  1 )  ≤  𝑀 ) ) | 
						
							| 30 | 29 | biimpd | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  <  𝑀  →  ( 2  +  1 )  ≤  𝑀 ) ) | 
						
							| 31 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 32 | 31 | breq1i | ⊢ ( 3  ≤  𝑀  ↔  ( 2  +  1 )  ≤  𝑀 ) | 
						
							| 33 | 30 32 | imbitrrdi | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  <  𝑀  →  3  ≤  𝑀 ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( ¬  2  ∥  𝑀  →  ( 𝑀  ∈  ℤ  →  ( 2  <  𝑀  →  3  ≤  𝑀 ) ) ) | 
						
							| 35 | 34 | com13 | ⊢ ( 2  <  𝑀  →  ( 𝑀  ∈  ℤ  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) ) | 
						
							| 36 |  | z2even | ⊢ 2  ∥  2 | 
						
							| 37 |  | breq2 | ⊢ ( 2  =  𝑀  →  ( 2  ∥  2  ↔  2  ∥  𝑀 ) ) | 
						
							| 38 | 36 37 | mpbii | ⊢ ( 2  =  𝑀  →  2  ∥  𝑀 ) | 
						
							| 39 | 38 | pm2.24d | ⊢ ( 2  =  𝑀  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) | 
						
							| 40 | 39 | a1d | ⊢ ( 2  =  𝑀  →  ( 𝑀  ∈  ℤ  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) ) | 
						
							| 41 | 35 40 | jaoi | ⊢ ( ( 2  <  𝑀  ∨  2  =  𝑀 )  →  ( 𝑀  ∈  ℤ  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 2  <  𝑀  ∨  2  =  𝑀 )  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) ) | 
						
							| 43 | 27 42 | sylbid | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  ≤  𝑀  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( 𝑀  ∈  ℤ  ∧  2  ≤  𝑀 )  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) | 
						
							| 45 | 44 | 3adant1 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  2  ≤  𝑀 )  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) | 
						
							| 46 | 23 45 | sylbi | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  2  ∥  𝑀  →  3  ≤  𝑀 ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  3  ≤  𝑀 ) | 
						
							| 48 | 47 | 3adant1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  3  ≤  𝑀 ) | 
						
							| 49 |  | eluz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  3  ≤  𝑀 ) ) | 
						
							| 50 | 20 22 48 49 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 51 |  | eluzelcn | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℂ ) | 
						
							| 52 | 51 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  𝐴  ∈  ℂ ) | 
						
							| 53 |  | eluz2nn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ∈  ℕ ) | 
						
							| 54 | 53 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  𝑀  ∈  ℕ ) | 
						
							| 55 |  | simp3 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ¬  2  ∥  𝑀 ) | 
						
							| 56 | 52 54 55 | oddpwp1fsum | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ( ( 𝐴 ↑ 𝑀 )  +  1 )  =  ( ( 𝐴  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) ) | 
						
							| 57 | 56 | eqcomd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ( ( 𝐴  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) )  =  ( ( 𝐴 ↑ 𝑀 )  +  1 ) ) | 
						
							| 58 |  | eluzge2nn0 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 60 | 10 59 | nn0expcld | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℕ0 ) | 
						
							| 61 | 60 | nn0cnd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 62 |  | peano2cn | ⊢ ( ( 𝐴 ↑ 𝑀 )  ∈  ℂ  →  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℂ ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℂ ) | 
						
							| 64 | 63 | 3adant3 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℂ ) | 
						
							| 65 | 17 | zcnd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 66 |  | eluz2nn | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ ) | 
						
							| 67 | 66 | peano2nnd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 68 | 67 | nncnd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 69 | 67 | nnne0d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  1 )  ≠  0 ) | 
						
							| 70 | 68 69 | jca | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴  +  1 )  ∈  ℂ  ∧  ( 𝐴  +  1 )  ≠  0 ) ) | 
						
							| 71 | 70 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ( ( 𝐴  +  1 )  ∈  ℂ  ∧  ( 𝐴  +  1 )  ≠  0 ) ) | 
						
							| 72 |  | divmul | ⊢ ( ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℂ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℂ  ∧  ( ( 𝐴  +  1 )  ∈  ℂ  ∧  ( 𝐴  +  1 )  ≠  0 ) )  →  ( ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ↔  ( ( 𝐴  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) )  =  ( ( 𝐴 ↑ 𝑀 )  +  1 ) ) ) | 
						
							| 73 | 64 65 71 72 | syl3anc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ↔  ( ( 𝐴  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) )  =  ( ( 𝐴 ↑ 𝑀 )  +  1 ) ) ) | 
						
							| 74 | 57 73 | mpbird | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 75 | 74 | eqcomd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) | 
						
							| 76 |  | lighneallem4a | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 )  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) )  →  2  ≤  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 77 | 18 50 75 76 | syl3anc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  2  ≤  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 78 |  | eluz2 | ⊢ ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℤ  ∧  2  ≤  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) ) | 
						
							| 79 | 2 17 77 78 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 2 )  ∧  ¬  2  ∥  𝑀 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ( ℤ≥ ‘ 2 ) ) |