Metamath Proof Explorer


Theorem lighneallem4b

Description: Lemma 2 for lighneallem4 . (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion lighneallem4b A 2 M 2 ¬ 2 M k = 0 M 1 1 k A k 2

Proof

Step Hyp Ref Expression
1 2z 2
2 1 a1i A 2 M 2 ¬ 2 M 2
3 fzfid A 2 M 2 0 M 1 Fin
4 neg1z 1
5 elfznn0 k 0 M 1 k 0
6 zexpcl 1 k 0 1 k
7 4 5 6 sylancr k 0 M 1 1 k
8 7 adantl A 2 M 2 k 0 M 1 1 k
9 eluzge2nn0 A 2 A 0
10 9 adantr A 2 M 2 A 0
11 10 adantr A 2 M 2 k 0 M 1 A 0
12 5 adantl A 2 M 2 k 0 M 1 k 0
13 11 12 nn0expcld A 2 M 2 k 0 M 1 A k 0
14 13 nn0zd A 2 M 2 k 0 M 1 A k
15 8 14 zmulcld A 2 M 2 k 0 M 1 1 k A k
16 3 15 fsumzcl A 2 M 2 k = 0 M 1 1 k A k
17 16 3adant3 A 2 M 2 ¬ 2 M k = 0 M 1 1 k A k
18 simp1 A 2 M 2 ¬ 2 M A 2
19 3z 3
20 19 a1i A 2 M 2 ¬ 2 M 3
21 eluzelz M 2 M
22 21 3ad2ant2 A 2 M 2 ¬ 2 M M
23 eluz2 M 2 2 M 2 M
24 2re 2
25 24 a1i M 2
26 zre M M
27 25 26 leloed M 2 M 2 < M 2 = M
28 zltp1le 2 M 2 < M 2 + 1 M
29 1 28 mpan M 2 < M 2 + 1 M
30 29 biimpd M 2 < M 2 + 1 M
31 df-3 3 = 2 + 1
32 31 breq1i 3 M 2 + 1 M
33 30 32 syl6ibr M 2 < M 3 M
34 33 a1i ¬ 2 M M 2 < M 3 M
35 34 com13 2 < M M ¬ 2 M 3 M
36 z2even 2 2
37 breq2 2 = M 2 2 2 M
38 36 37 mpbii 2 = M 2 M
39 38 pm2.24d 2 = M ¬ 2 M 3 M
40 39 a1d 2 = M M ¬ 2 M 3 M
41 35 40 jaoi 2 < M 2 = M M ¬ 2 M 3 M
42 41 com12 M 2 < M 2 = M ¬ 2 M 3 M
43 27 42 sylbid M 2 M ¬ 2 M 3 M
44 43 imp M 2 M ¬ 2 M 3 M
45 44 3adant1 2 M 2 M ¬ 2 M 3 M
46 23 45 sylbi M 2 ¬ 2 M 3 M
47 46 imp M 2 ¬ 2 M 3 M
48 47 3adant1 A 2 M 2 ¬ 2 M 3 M
49 eluz2 M 3 3 M 3 M
50 20 22 48 49 syl3anbrc A 2 M 2 ¬ 2 M M 3
51 eluzelcn A 2 A
52 51 3ad2ant1 A 2 M 2 ¬ 2 M A
53 eluz2nn M 2 M
54 53 3ad2ant2 A 2 M 2 ¬ 2 M M
55 simp3 A 2 M 2 ¬ 2 M ¬ 2 M
56 52 54 55 oddpwp1fsum A 2 M 2 ¬ 2 M A M + 1 = A + 1 k = 0 M 1 1 k A k
57 56 eqcomd A 2 M 2 ¬ 2 M A + 1 k = 0 M 1 1 k A k = A M + 1
58 eluzge2nn0 M 2 M 0
59 58 adantl A 2 M 2 M 0
60 10 59 nn0expcld A 2 M 2 A M 0
61 60 nn0cnd A 2 M 2 A M
62 peano2cn A M A M + 1
63 61 62 syl A 2 M 2 A M + 1
64 63 3adant3 A 2 M 2 ¬ 2 M A M + 1
65 17 zcnd A 2 M 2 ¬ 2 M k = 0 M 1 1 k A k
66 eluz2nn A 2 A
67 66 peano2nnd A 2 A + 1
68 67 nncnd A 2 A + 1
69 67 nnne0d A 2 A + 1 0
70 68 69 jca A 2 A + 1 A + 1 0
71 70 3ad2ant1 A 2 M 2 ¬ 2 M A + 1 A + 1 0
72 divmul A M + 1 k = 0 M 1 1 k A k A + 1 A + 1 0 A M + 1 A + 1 = k = 0 M 1 1 k A k A + 1 k = 0 M 1 1 k A k = A M + 1
73 64 65 71 72 syl3anc A 2 M 2 ¬ 2 M A M + 1 A + 1 = k = 0 M 1 1 k A k A + 1 k = 0 M 1 1 k A k = A M + 1
74 57 73 mpbird A 2 M 2 ¬ 2 M A M + 1 A + 1 = k = 0 M 1 1 k A k
75 74 eqcomd A 2 M 2 ¬ 2 M k = 0 M 1 1 k A k = A M + 1 A + 1
76 lighneallem4a A 2 M 3 k = 0 M 1 1 k A k = A M + 1 A + 1 2 k = 0 M 1 1 k A k
77 18 50 75 76 syl3anc A 2 M 2 ¬ 2 M 2 k = 0 M 1 1 k A k
78 eluz2 k = 0 M 1 1 k A k 2 2 k = 0 M 1 1 k A k 2 k = 0 M 1 1 k A k
79 2 17 77 78 syl3anbrc A 2 M 2 ¬ 2 M k = 0 M 1 1 k A k 2