| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 | 1 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> 2 e. ZZ ) | 
						
							| 3 |  | fzfid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> ( 0 ... ( M - 1 ) ) e. Fin ) | 
						
							| 4 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 5 |  | elfznn0 |  |-  ( k e. ( 0 ... ( M - 1 ) ) -> k e. NN0 ) | 
						
							| 6 |  | zexpcl |  |-  ( ( -u 1 e. ZZ /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( k e. ( 0 ... ( M - 1 ) ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 9 |  | eluzge2nn0 |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> A e. NN0 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> A e. NN0 ) | 
						
							| 12 | 5 | adantl |  |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> k e. NN0 ) | 
						
							| 13 | 11 12 | nn0expcld |  |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( A ^ k ) e. NN0 ) | 
						
							| 14 | 13 | nn0zd |  |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( A ^ k ) e. ZZ ) | 
						
							| 15 | 8 14 | zmulcld |  |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. ZZ ) | 
						
							| 16 | 3 15 | fsumzcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. ZZ ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. ZZ ) | 
						
							| 18 |  | simp1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 19 |  | 3z |  |-  3 e. ZZ | 
						
							| 20 | 19 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> 3 e. ZZ ) | 
						
							| 21 |  | eluzelz |  |-  ( M e. ( ZZ>= ` 2 ) -> M e. ZZ ) | 
						
							| 22 | 21 | 3ad2ant2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> M e. ZZ ) | 
						
							| 23 |  | eluz2 |  |-  ( M e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ M e. ZZ /\ 2 <_ M ) ) | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 | 24 | a1i |  |-  ( M e. ZZ -> 2 e. RR ) | 
						
							| 26 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 27 | 25 26 | leloed |  |-  ( M e. ZZ -> ( 2 <_ M <-> ( 2 < M \/ 2 = M ) ) ) | 
						
							| 28 |  | zltp1le |  |-  ( ( 2 e. ZZ /\ M e. ZZ ) -> ( 2 < M <-> ( 2 + 1 ) <_ M ) ) | 
						
							| 29 | 1 28 | mpan |  |-  ( M e. ZZ -> ( 2 < M <-> ( 2 + 1 ) <_ M ) ) | 
						
							| 30 | 29 | biimpd |  |-  ( M e. ZZ -> ( 2 < M -> ( 2 + 1 ) <_ M ) ) | 
						
							| 31 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 32 | 31 | breq1i |  |-  ( 3 <_ M <-> ( 2 + 1 ) <_ M ) | 
						
							| 33 | 30 32 | imbitrrdi |  |-  ( M e. ZZ -> ( 2 < M -> 3 <_ M ) ) | 
						
							| 34 | 33 | a1i |  |-  ( -. 2 || M -> ( M e. ZZ -> ( 2 < M -> 3 <_ M ) ) ) | 
						
							| 35 | 34 | com13 |  |-  ( 2 < M -> ( M e. ZZ -> ( -. 2 || M -> 3 <_ M ) ) ) | 
						
							| 36 |  | z2even |  |-  2 || 2 | 
						
							| 37 |  | breq2 |  |-  ( 2 = M -> ( 2 || 2 <-> 2 || M ) ) | 
						
							| 38 | 36 37 | mpbii |  |-  ( 2 = M -> 2 || M ) | 
						
							| 39 | 38 | pm2.24d |  |-  ( 2 = M -> ( -. 2 || M -> 3 <_ M ) ) | 
						
							| 40 | 39 | a1d |  |-  ( 2 = M -> ( M e. ZZ -> ( -. 2 || M -> 3 <_ M ) ) ) | 
						
							| 41 | 35 40 | jaoi |  |-  ( ( 2 < M \/ 2 = M ) -> ( M e. ZZ -> ( -. 2 || M -> 3 <_ M ) ) ) | 
						
							| 42 | 41 | com12 |  |-  ( M e. ZZ -> ( ( 2 < M \/ 2 = M ) -> ( -. 2 || M -> 3 <_ M ) ) ) | 
						
							| 43 | 27 42 | sylbid |  |-  ( M e. ZZ -> ( 2 <_ M -> ( -. 2 || M -> 3 <_ M ) ) ) | 
						
							| 44 | 43 | imp |  |-  ( ( M e. ZZ /\ 2 <_ M ) -> ( -. 2 || M -> 3 <_ M ) ) | 
						
							| 45 | 44 | 3adant1 |  |-  ( ( 2 e. ZZ /\ M e. ZZ /\ 2 <_ M ) -> ( -. 2 || M -> 3 <_ M ) ) | 
						
							| 46 | 23 45 | sylbi |  |-  ( M e. ( ZZ>= ` 2 ) -> ( -. 2 || M -> 3 <_ M ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> 3 <_ M ) | 
						
							| 48 | 47 | 3adant1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> 3 <_ M ) | 
						
							| 49 |  | eluz2 |  |-  ( M e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ M e. ZZ /\ 3 <_ M ) ) | 
						
							| 50 | 20 22 48 49 | syl3anbrc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> M e. ( ZZ>= ` 3 ) ) | 
						
							| 51 |  | eluzelcn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. CC ) | 
						
							| 52 | 51 | 3ad2ant1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> A e. CC ) | 
						
							| 53 |  | eluz2nn |  |-  ( M e. ( ZZ>= ` 2 ) -> M e. NN ) | 
						
							| 54 | 53 | 3ad2ant2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> M e. NN ) | 
						
							| 55 |  | simp3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> -. 2 || M ) | 
						
							| 56 | 52 54 55 | oddpwp1fsum |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> ( ( A ^ M ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) | 
						
							| 57 | 56 | eqcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> ( ( A + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( A ^ M ) + 1 ) ) | 
						
							| 58 |  | eluzge2nn0 |  |-  ( M e. ( ZZ>= ` 2 ) -> M e. NN0 ) | 
						
							| 59 | 58 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> M e. NN0 ) | 
						
							| 60 | 10 59 | nn0expcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> ( A ^ M ) e. NN0 ) | 
						
							| 61 | 60 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> ( A ^ M ) e. CC ) | 
						
							| 62 |  | peano2cn |  |-  ( ( A ^ M ) e. CC -> ( ( A ^ M ) + 1 ) e. CC ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) ) -> ( ( A ^ M ) + 1 ) e. CC ) | 
						
							| 64 | 63 | 3adant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> ( ( A ^ M ) + 1 ) e. CC ) | 
						
							| 65 | 17 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) | 
						
							| 66 |  | eluz2nn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN ) | 
						
							| 67 | 66 | peano2nnd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + 1 ) e. NN ) | 
						
							| 68 | 67 | nncnd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + 1 ) e. CC ) | 
						
							| 69 | 67 | nnne0d |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + 1 ) =/= 0 ) | 
						
							| 70 | 68 69 | jca |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) e. CC /\ ( A + 1 ) =/= 0 ) ) | 
						
							| 71 | 70 | 3ad2ant1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> ( ( A + 1 ) e. CC /\ ( A + 1 ) =/= 0 ) ) | 
						
							| 72 |  | divmul |  |-  ( ( ( ( A ^ M ) + 1 ) e. CC /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC /\ ( ( A + 1 ) e. CC /\ ( A + 1 ) =/= 0 ) ) -> ( ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) = sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) <-> ( ( A + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( A ^ M ) + 1 ) ) ) | 
						
							| 73 | 64 65 71 72 | syl3anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> ( ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) = sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) <-> ( ( A + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( A ^ M ) + 1 ) ) ) | 
						
							| 74 | 57 73 | mpbird |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) = sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) | 
						
							| 75 | 74 | eqcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) = ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) | 
						
							| 76 |  | lighneallem4a |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) = ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) -> 2 <_ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) | 
						
							| 77 | 18 50 75 76 | syl3anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> 2 <_ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) | 
						
							| 78 |  | eluz2 |  |-  ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. ZZ /\ 2 <_ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) | 
						
							| 79 | 2 17 77 78 | syl3anbrc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. ( ZZ>= ` 2 ) ) |