| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 2 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 3 | 1 2 | expcld |  |-  ( N e. NN -> ( 2 ^ N ) e. CC ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 ^ N ) e. CC ) | 
						
							| 5 |  | 1cnd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> 1 e. CC ) | 
						
							| 6 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 7 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 8 |  | nncn |  |-  ( P e. NN -> P e. CC ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. CC ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. CC ) | 
						
							| 11 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 12 | 11 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. NN0 ) | 
						
							| 13 | 10 12 | expcld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P ^ M ) e. CC ) | 
						
							| 14 | 4 5 13 | 3jca |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) e. CC /\ 1 e. CC /\ ( P ^ M ) e. CC ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( 2 ^ N ) e. CC /\ 1 e. CC /\ ( P ^ M ) e. CC ) ) | 
						
							| 16 |  | subadd2 |  |-  ( ( ( 2 ^ N ) e. CC /\ 1 e. CC /\ ( P ^ M ) e. CC ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( P ^ M ) + 1 ) = ( 2 ^ N ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( P ^ M ) + 1 ) = ( 2 ^ N ) ) ) | 
						
							| 18 | 10 | adantr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> P e. CC ) | 
						
							| 19 |  | simpl2 |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> M e. NN ) | 
						
							| 20 |  | simpr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> -. 2 || M ) | 
						
							| 21 | 18 19 20 | oddpwp1fsum |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( P ^ M ) + 1 ) = ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( P ^ M ) + 1 ) = ( 2 ^ N ) <-> ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) ) | 
						
							| 23 |  | peano2nn |  |-  ( P e. NN -> ( P + 1 ) e. NN ) | 
						
							| 24 | 23 | nnzd |  |-  ( P e. NN -> ( P + 1 ) e. ZZ ) | 
						
							| 25 | 6 7 24 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P + 1 ) e. ZZ ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P + 1 ) e. ZZ ) | 
						
							| 27 |  | fzfid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 0 ... ( M - 1 ) ) e. Fin ) | 
						
							| 28 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 29 | 28 | a1i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> -u 1 e. ZZ ) | 
						
							| 30 |  | elfznn0 |  |-  ( k e. ( 0 ... ( M - 1 ) ) -> k e. NN0 ) | 
						
							| 31 |  | zexpcl |  |-  ( ( -u 1 e. ZZ /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 32 | 29 30 31 | syl2an |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 33 |  | nnz |  |-  ( P e. NN -> P e. ZZ ) | 
						
							| 34 | 6 7 33 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) | 
						
							| 35 | 34 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. ZZ ) | 
						
							| 36 |  | zexpcl |  |-  ( ( P e. ZZ /\ k e. NN0 ) -> ( P ^ k ) e. ZZ ) | 
						
							| 37 | 35 30 36 | syl2an |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. ZZ ) | 
						
							| 38 | 32 37 | zmulcld |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) | 
						
							| 39 | 27 38 | fsumzcl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) | 
						
							| 40 | 26 39 | jca |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( P + 1 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) | 
						
							| 41 | 40 | ad2antrr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( ( P + 1 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) | 
						
							| 42 |  | dvdsmul2 |  |-  ( ( ( P + 1 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) | 
						
							| 44 |  | breq2 |  |-  ( ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) <-> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) <-> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) ) ) | 
						
							| 46 |  | 2a1 |  |-  ( M = 1 -> ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) | 
						
							| 47 |  | 2prm |  |-  2 e. Prime | 
						
							| 48 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 49 | 6 48 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 52 |  | df-ne |  |-  ( M =/= 1 <-> -. M = 1 ) | 
						
							| 53 |  | eluz2b3 |  |-  ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ M =/= 1 ) ) | 
						
							| 54 | 53 | simplbi2 |  |-  ( M e. NN -> ( M =/= 1 -> M e. ( ZZ>= ` 2 ) ) ) | 
						
							| 55 | 52 54 | biimtrrid |  |-  ( M e. NN -> ( -. M = 1 -> M e. ( ZZ>= ` 2 ) ) ) | 
						
							| 56 | 55 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. M = 1 -> M e. ( ZZ>= ` 2 ) ) ) | 
						
							| 57 | 56 | com12 |  |-  ( -. M = 1 -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. ( ZZ>= ` 2 ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( -. M = 1 /\ -. 2 || M ) -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. ( ZZ>= ` 2 ) ) ) | 
						
							| 59 | 58 | impcom |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> M e. ( ZZ>= ` 2 ) ) | 
						
							| 60 |  | simprr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> -. 2 || M ) | 
						
							| 61 |  | lighneallem4b |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ( ZZ>= ` 2 ) ) | 
						
							| 62 | 51 59 60 61 | syl3anc |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ( ZZ>= ` 2 ) ) | 
						
							| 63 | 2 | 3ad2ant3 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> N e. NN0 ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> N e. NN0 ) | 
						
							| 65 |  | dvdsprmpweqnn |  |-  ( ( 2 e. Prime /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> E. n e. NN sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) ) | 
						
							| 66 | 47 62 64 65 | mp3an2i |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> E. n e. NN sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) ) | 
						
							| 67 |  | 2z |  |-  2 e. ZZ | 
						
							| 68 | 67 | a1i |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> 2 e. ZZ ) | 
						
							| 69 |  | iddvdsexp |  |-  ( ( 2 e. ZZ /\ n e. NN ) -> 2 || ( 2 ^ n ) ) | 
						
							| 70 | 68 69 | sylan |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> 2 || ( 2 ^ n ) ) | 
						
							| 71 |  | breq2 |  |-  ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> 2 || ( 2 ^ n ) ) ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> 2 || ( 2 ^ n ) ) ) | 
						
							| 73 |  | fzfid |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( 0 ... ( M - 1 ) ) e. Fin ) | 
						
							| 74 | 28 | a1i |  |-  ( P e. NN -> -u 1 e. ZZ ) | 
						
							| 75 | 74 31 | sylan |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 76 |  | nnnn0 |  |-  ( P e. NN -> P e. NN0 ) | 
						
							| 77 | 76 | adantr |  |-  ( ( P e. NN /\ k e. NN0 ) -> P e. NN0 ) | 
						
							| 78 |  | simpr |  |-  ( ( P e. NN /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 79 | 77 78 | nn0expcld |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN0 ) | 
						
							| 80 | 79 | nn0zd |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. ZZ ) | 
						
							| 81 | 75 80 | zmulcld |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) | 
						
							| 82 | 81 | ex |  |-  ( P e. NN -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) | 
						
							| 83 | 6 7 82 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) | 
						
							| 84 | 83 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) | 
						
							| 85 | 84 | ad2antrr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) | 
						
							| 86 | 85 30 | impel |  |-  ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) | 
						
							| 87 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 88 |  | m1expcl2 |  |-  ( k e. ZZ -> ( -u 1 ^ k ) e. { -u 1 , 1 } ) | 
						
							| 89 | 87 88 | syl |  |-  ( k e. NN0 -> ( -u 1 ^ k ) e. { -u 1 , 1 } ) | 
						
							| 90 |  | ovex |  |-  ( -u 1 ^ k ) e. _V | 
						
							| 91 | 90 | elpr |  |-  ( ( -u 1 ^ k ) e. { -u 1 , 1 } <-> ( ( -u 1 ^ k ) = -u 1 \/ ( -u 1 ^ k ) = 1 ) ) | 
						
							| 92 |  | n2dvdsm1 |  |-  -. 2 || -u 1 | 
						
							| 93 |  | breq2 |  |-  ( ( -u 1 ^ k ) = -u 1 -> ( 2 || ( -u 1 ^ k ) <-> 2 || -u 1 ) ) | 
						
							| 94 | 92 93 | mtbiri |  |-  ( ( -u 1 ^ k ) = -u 1 -> -. 2 || ( -u 1 ^ k ) ) | 
						
							| 95 |  | n2dvds1 |  |-  -. 2 || 1 | 
						
							| 96 |  | breq2 |  |-  ( ( -u 1 ^ k ) = 1 -> ( 2 || ( -u 1 ^ k ) <-> 2 || 1 ) ) | 
						
							| 97 | 95 96 | mtbiri |  |-  ( ( -u 1 ^ k ) = 1 -> -. 2 || ( -u 1 ^ k ) ) | 
						
							| 98 | 94 97 | jaoi |  |-  ( ( ( -u 1 ^ k ) = -u 1 \/ ( -u 1 ^ k ) = 1 ) -> -. 2 || ( -u 1 ^ k ) ) | 
						
							| 99 | 98 | a1d |  |-  ( ( ( -u 1 ^ k ) = -u 1 \/ ( -u 1 ^ k ) = 1 ) -> ( k e. NN0 -> -. 2 || ( -u 1 ^ k ) ) ) | 
						
							| 100 | 91 99 | sylbi |  |-  ( ( -u 1 ^ k ) e. { -u 1 , 1 } -> ( k e. NN0 -> -. 2 || ( -u 1 ^ k ) ) ) | 
						
							| 101 | 89 100 | mpcom |  |-  ( k e. NN0 -> -. 2 || ( -u 1 ^ k ) ) | 
						
							| 102 | 101 | adantl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. 2 || ( -u 1 ^ k ) ) | 
						
							| 103 |  | elnn0 |  |-  ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) | 
						
							| 104 |  | oddn2prm |  |-  ( P e. ( Prime \ { 2 } ) -> -. 2 || P ) | 
						
							| 105 | 104 | adantr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> -. 2 || P ) | 
						
							| 106 |  | simpr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> k e. NN ) | 
						
							| 107 |  | prmdvdsexp |  |-  ( ( 2 e. Prime /\ P e. ZZ /\ k e. NN ) -> ( 2 || ( P ^ k ) <-> 2 || P ) ) | 
						
							| 108 | 47 34 106 107 | mp3an2ani |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> ( 2 || ( P ^ k ) <-> 2 || P ) ) | 
						
							| 109 | 105 108 | mtbird |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> -. 2 || ( P ^ k ) ) | 
						
							| 110 | 109 | expcom |  |-  ( k e. NN -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) | 
						
							| 111 |  | oveq2 |  |-  ( k = 0 -> ( P ^ k ) = ( P ^ 0 ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ k ) = ( P ^ 0 ) ) | 
						
							| 113 | 9 | adantl |  |-  ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> P e. CC ) | 
						
							| 114 | 113 | exp0d |  |-  ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ 0 ) = 1 ) | 
						
							| 115 | 112 114 | eqtrd |  |-  ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ k ) = 1 ) | 
						
							| 116 | 115 | breq2d |  |-  ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( 2 || ( P ^ k ) <-> 2 || 1 ) ) | 
						
							| 117 | 95 116 | mtbiri |  |-  ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> -. 2 || ( P ^ k ) ) | 
						
							| 118 | 117 | ex |  |-  ( k = 0 -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) | 
						
							| 119 | 110 118 | jaoi |  |-  ( ( k e. NN \/ k = 0 ) -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) | 
						
							| 120 | 103 119 | sylbi |  |-  ( k e. NN0 -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) | 
						
							| 121 | 120 | impcom |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. 2 || ( P ^ k ) ) | 
						
							| 122 |  | ioran |  |-  ( -. ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) <-> ( -. 2 || ( -u 1 ^ k ) /\ -. 2 || ( P ^ k ) ) ) | 
						
							| 123 | 102 121 122 | sylanbrc |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) ) | 
						
							| 124 | 28 31 | mpan |  |-  ( k e. NN0 -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 125 | 124 | adantl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) | 
						
							| 126 | 6 7 76 | 3syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. NN0 ) | 
						
							| 127 | 126 | adantr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> P e. NN0 ) | 
						
							| 128 |  | simpr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 129 | 127 128 | nn0expcld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( P ^ k ) e. NN0 ) | 
						
							| 130 | 129 | nn0zd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( P ^ k ) e. ZZ ) | 
						
							| 131 |  | euclemma |  |-  ( ( 2 e. Prime /\ ( -u 1 ^ k ) e. ZZ /\ ( P ^ k ) e. ZZ ) -> ( 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) ) ) | 
						
							| 132 | 47 125 130 131 | mp3an2i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) ) ) | 
						
							| 133 | 123 132 | mtbird |  |-  ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) | 
						
							| 134 | 133 | ex |  |-  ( P e. ( Prime \ { 2 } ) -> ( k e. NN0 -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) | 
						
							| 135 | 134 | 3ad2ant1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( k e. NN0 -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) | 
						
							| 136 | 135 | ad2antrr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( k e. NN0 -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) | 
						
							| 137 | 136 30 | impel |  |-  ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) | 
						
							| 138 |  | nnm1nn0 |  |-  ( M e. NN -> ( M - 1 ) e. NN0 ) | 
						
							| 139 |  | hashfz0 |  |-  ( ( M - 1 ) e. NN0 -> ( # ` ( 0 ... ( M - 1 ) ) ) = ( ( M - 1 ) + 1 ) ) | 
						
							| 140 | 138 139 | syl |  |-  ( M e. NN -> ( # ` ( 0 ... ( M - 1 ) ) ) = ( ( M - 1 ) + 1 ) ) | 
						
							| 141 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 142 |  | npcan1 |  |-  ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 143 | 141 142 | syl |  |-  ( M e. NN -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 144 | 140 143 | eqtr2d |  |-  ( M e. NN -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) | 
						
							| 145 | 144 | 3ad2ant2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) | 
						
							| 147 | 146 | breq2d |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> ( 2 || M <-> 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) | 
						
							| 148 | 147 | notbid |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> ( -. 2 || M <-> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) | 
						
							| 149 | 148 | biimpd |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> ( -. 2 || M -> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) | 
						
							| 150 | 149 | impr |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) | 
						
							| 151 | 150 | adantr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) | 
						
							| 152 | 73 86 137 151 | oddsumodd |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> -. 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) | 
						
							| 153 | 152 | pm2.21d |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) -> M = 1 ) ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) -> M = 1 ) ) | 
						
							| 155 | 72 154 | sylbird |  |-  ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) -> ( 2 || ( 2 ^ n ) -> M = 1 ) ) | 
						
							| 156 | 155 | ex |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> ( 2 || ( 2 ^ n ) -> M = 1 ) ) ) | 
						
							| 157 | 70 156 | mpid |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> M = 1 ) ) | 
						
							| 158 | 157 | rexlimdva |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> ( E. n e. NN sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> M = 1 ) ) | 
						
							| 159 | 66 158 | syld |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) | 
						
							| 160 | 159 | exp32 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. M = 1 -> ( -. 2 || M -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) ) | 
						
							| 161 | 160 | com12 |  |-  ( -. M = 1 -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. 2 || M -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) ) | 
						
							| 162 | 161 | impd |  |-  ( -. M = 1 -> ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) | 
						
							| 163 | 46 162 | pm2.61i |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) | 
						
							| 164 | 163 | adantr |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) | 
						
							| 165 | 45 164 | sylbid |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) -> M = 1 ) ) | 
						
							| 166 | 43 165 | mpd |  |-  ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> M = 1 ) | 
						
							| 167 | 166 | ex |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) -> M = 1 ) ) | 
						
							| 168 | 22 167 | sylbid |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( P ^ M ) + 1 ) = ( 2 ^ N ) -> M = 1 ) ) | 
						
							| 169 | 17 168 | sylbid |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 170 | 169 | ex |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 171 | 170 | adantld |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 172 | 171 | 3imp |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ -. 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |