| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lighneallem1 |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) ) |
| 2 |
|
eqneqall |
|- ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) -> M = 1 ) ) |
| 3 |
1 2
|
syl5com |
|- ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) |
| 4 |
3
|
3exp |
|- ( P = 2 -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
| 5 |
4
|
a1d |
|- ( P = 2 -> ( P e. Prime -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 6 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
| 7 |
|
lighneallem2 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ 2 || N /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |
| 8 |
7
|
3exp |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) |
| 9 |
8
|
3exp |
|- ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 10 |
9
|
com3r |
|- ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 11 |
10
|
com24 |
|- ( N e. NN -> ( 2 || N -> ( M e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 12 |
|
lighneallem3 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |
| 13 |
12
|
3exp |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) |
| 14 |
13
|
3exp |
|- ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 15 |
14
|
com24 |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -. 2 || N /\ 2 || M ) -> ( N e. NN -> ( M e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 16 |
15
|
com14 |
|- ( M e. NN -> ( ( -. 2 || N /\ 2 || M ) -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 17 |
16
|
expcomd |
|- ( M e. NN -> ( 2 || M -> ( -. 2 || N -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) ) |
| 18 |
|
lighneallem4 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ -. 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |
| 19 |
18
|
3exp |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) |
| 20 |
19
|
3exp |
|- ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( ( -. 2 || N /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 21 |
20
|
com24 |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -. 2 || N /\ -. 2 || M ) -> ( N e. NN -> ( M e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 22 |
21
|
com14 |
|- ( M e. NN -> ( ( -. 2 || N /\ -. 2 || M ) -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 23 |
22
|
expcomd |
|- ( M e. NN -> ( -. 2 || M -> ( -. 2 || N -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) ) |
| 24 |
17 23
|
pm2.61d |
|- ( M e. NN -> ( -. 2 || N -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 25 |
24
|
com13 |
|- ( N e. NN -> ( -. 2 || N -> ( M e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 26 |
11 25
|
pm2.61d |
|- ( N e. NN -> ( M e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
| 27 |
26
|
com13 |
|- ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
| 28 |
6 27
|
sylbir |
|- ( ( P e. Prime /\ P =/= 2 ) -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
| 29 |
28
|
expcom |
|- ( P =/= 2 -> ( P e. Prime -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) |
| 30 |
5 29
|
pm2.61ine |
|- ( P e. Prime -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) |
| 31 |
30
|
3imp1 |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |
| 32 |
|
oveq2 |
|- ( M = 1 -> ( P ^ M ) = ( P ^ 1 ) ) |
| 33 |
32
|
eqeq2d |
|- ( M = 1 -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) ) ) |
| 34 |
33
|
adantl |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ M = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) ) ) |
| 35 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 36 |
35
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> P e. CC ) |
| 38 |
37
|
exp1d |
|- ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( P ^ 1 ) = P ) |
| 39 |
38
|
eqeq2d |
|- ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) <-> ( ( 2 ^ N ) - 1 ) = P ) ) |
| 40 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 41 |
40
|
3ad2ant3 |
|- ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> N e. ZZ ) |
| 42 |
|
simpl1 |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> P e. Prime ) |
| 43 |
|
eleq1 |
|- ( ( ( 2 ^ N ) - 1 ) = P -> ( ( ( 2 ^ N ) - 1 ) e. Prime <-> P e. Prime ) ) |
| 44 |
43
|
adantl |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> ( ( ( 2 ^ N ) - 1 ) e. Prime <-> P e. Prime ) ) |
| 45 |
42 44
|
mpbird |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> ( ( 2 ^ N ) - 1 ) e. Prime ) |
| 46 |
|
mersenne |
|- ( ( N e. ZZ /\ ( ( 2 ^ N ) - 1 ) e. Prime ) -> N e. Prime ) |
| 47 |
41 45 46
|
syl2an2r |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> N e. Prime ) |
| 48 |
47
|
ex |
|- ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = P -> N e. Prime ) ) |
| 49 |
39 48
|
sylbid |
|- ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) -> N e. Prime ) ) |
| 50 |
49
|
adantr |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ M = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) -> N e. Prime ) ) |
| 51 |
34 50
|
sylbid |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ M = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> N e. Prime ) ) |
| 52 |
51
|
impancom |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> ( M = 1 -> N e. Prime ) ) |
| 53 |
31 52
|
jcai |
|- ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> ( M = 1 /\ N e. Prime ) ) |