| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lighneallem1 |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) ) | 
						
							| 2 |  | eqneqall |  |-  ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> ( ( ( 2 ^ N ) - 1 ) =/= ( P ^ M ) -> M = 1 ) ) | 
						
							| 3 | 1 2 | syl5com |  |-  ( ( P = 2 /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) | 
						
							| 4 | 3 | 3exp |  |-  ( P = 2 -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) | 
						
							| 5 | 4 | a1d |  |-  ( P = 2 -> ( P e. Prime -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 6 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 7 |  | lighneallem2 |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ 2 || N /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) | 
						
							| 8 | 7 | 3exp |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 9 | 8 | 3exp |  |-  ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 10 | 9 | com3r |  |-  ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( 2 || N -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 11 | 10 | com24 |  |-  ( N e. NN -> ( 2 || N -> ( M e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 12 |  | lighneallem3 |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) | 
						
							| 13 | 12 | 3exp |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 14 | 13 | 3exp |  |-  ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( ( -. 2 || N /\ 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 15 | 14 | com24 |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -. 2 || N /\ 2 || M ) -> ( N e. NN -> ( M e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 16 | 15 | com14 |  |-  ( M e. NN -> ( ( -. 2 || N /\ 2 || M ) -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 17 | 16 | expcomd |  |-  ( M e. NN -> ( 2 || M -> ( -. 2 || N -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) ) | 
						
							| 18 |  | lighneallem4 |  |-  ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ -. 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) | 
						
							| 19 | 18 | 3exp |  |-  ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) | 
						
							| 20 | 19 | 3exp |  |-  ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( ( -. 2 || N /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 21 | 20 | com24 |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -. 2 || N /\ -. 2 || M ) -> ( N e. NN -> ( M e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 22 | 21 | com14 |  |-  ( M e. NN -> ( ( -. 2 || N /\ -. 2 || M ) -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 23 | 22 | expcomd |  |-  ( M e. NN -> ( -. 2 || M -> ( -. 2 || N -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) ) | 
						
							| 24 | 17 23 | pm2.61d |  |-  ( M e. NN -> ( -. 2 || N -> ( N e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 25 | 24 | com13 |  |-  ( N e. NN -> ( -. 2 || N -> ( M e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 26 | 11 25 | pm2.61d |  |-  ( N e. NN -> ( M e. NN -> ( P e. ( Prime \ { 2 } ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) | 
						
							| 27 | 26 | com13 |  |-  ( P e. ( Prime \ { 2 } ) -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) | 
						
							| 28 | 6 27 | sylbir |  |-  ( ( P e. Prime /\ P =/= 2 ) -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) | 
						
							| 29 | 28 | expcom |  |-  ( P =/= 2 -> ( P e. Prime -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) ) | 
						
							| 30 | 5 29 | pm2.61ine |  |-  ( P e. Prime -> ( M e. NN -> ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) ) | 
						
							| 31 | 30 | 3imp1 |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) | 
						
							| 32 |  | oveq2 |  |-  ( M = 1 -> ( P ^ M ) = ( P ^ 1 ) ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( M = 1 -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ M = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) ) ) | 
						
							| 35 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 36 | 35 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> P e. CC ) | 
						
							| 38 | 37 | exp1d |  |-  ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( P ^ 1 ) = P ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) <-> ( ( 2 ^ N ) - 1 ) = P ) ) | 
						
							| 40 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 41 | 40 | 3ad2ant3 |  |-  ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> N e. ZZ ) | 
						
							| 42 |  | simpl1 |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> P e. Prime ) | 
						
							| 43 |  | eleq1 |  |-  ( ( ( 2 ^ N ) - 1 ) = P -> ( ( ( 2 ^ N ) - 1 ) e. Prime <-> P e. Prime ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> ( ( ( 2 ^ N ) - 1 ) e. Prime <-> P e. Prime ) ) | 
						
							| 45 | 42 44 | mpbird |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> ( ( 2 ^ N ) - 1 ) e. Prime ) | 
						
							| 46 |  | mersenne |  |-  ( ( N e. ZZ /\ ( ( 2 ^ N ) - 1 ) e. Prime ) -> N e. Prime ) | 
						
							| 47 | 41 45 46 | syl2an2r |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = P ) -> N e. Prime ) | 
						
							| 48 | 47 | ex |  |-  ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = P -> N e. Prime ) ) | 
						
							| 49 | 39 48 | sylbid |  |-  ( ( P e. Prime /\ M e. NN /\ N e. NN ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) -> N e. Prime ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ M = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ 1 ) -> N e. Prime ) ) | 
						
							| 51 | 34 50 | sylbid |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ M = 1 ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> N e. Prime ) ) | 
						
							| 52 | 51 | impancom |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> ( M = 1 -> N e. Prime ) ) | 
						
							| 53 | 31 52 | jcai |  |-  ( ( ( P e. Prime /\ M e. NN /\ N e. NN ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> ( M = 1 /\ N e. Prime ) ) |