| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. ZZ ) | 
						
							| 2 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 3 | 2 | numexp1 |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 4 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 5 | 3 4 | eqtri |  |-  ( 2 ^ 1 ) = ( 1 + 1 ) | 
						
							| 6 |  | prmuz2 |  |-  ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 8 |  | eluz2gt1 |  |-  ( ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) -> 1 < ( ( 2 ^ P ) - 1 ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < ( ( 2 ^ P ) - 1 ) ) | 
						
							| 10 |  | 1red |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 e. RR ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 | 11 | a1i |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 2 e. RR ) | 
						
							| 13 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 14 | 13 | a1i |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 2 =/= 0 ) | 
						
							| 15 | 12 14 1 | reexpclzd |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ P ) e. RR ) | 
						
							| 16 | 10 10 15 | ltaddsubd |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 1 + 1 ) < ( 2 ^ P ) <-> 1 < ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 17 | 9 16 | mpbird |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 + 1 ) < ( 2 ^ P ) ) | 
						
							| 18 | 5 17 | eqbrtrid |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ 1 ) < ( 2 ^ P ) ) | 
						
							| 19 |  | 1zzd |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 e. ZZ ) | 
						
							| 20 |  | 1lt2 |  |-  1 < 2 | 
						
							| 21 | 20 | a1i |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < 2 ) | 
						
							| 22 | 12 19 1 21 | ltexp2d |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 < P <-> ( 2 ^ 1 ) < ( 2 ^ P ) ) ) | 
						
							| 23 | 18 22 | mpbird |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < P ) | 
						
							| 24 |  | eluz2b1 |  |-  ( P e. ( ZZ>= ` 2 ) <-> ( P e. ZZ /\ 1 < P ) ) | 
						
							| 25 | 1 23 24 | sylanbrc |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 26 |  | simpllr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. Prime ) | 
						
							| 27 |  | prmnn |  |-  ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. NN ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. NN ) | 
						
							| 29 | 28 | nncnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. CC ) | 
						
							| 30 |  | 2nn |  |-  2 e. NN | 
						
							| 31 |  | elfzuz |  |-  ( k e. ( 2 ... ( P - 1 ) ) -> k e. ( ZZ>= ` 2 ) ) | 
						
							| 32 | 31 | ad2antlr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. ( ZZ>= ` 2 ) ) | 
						
							| 33 |  | eluz2nn |  |-  ( k e. ( ZZ>= ` 2 ) -> k e. NN ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. NN ) | 
						
							| 35 | 34 | nnnn0d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. NN0 ) | 
						
							| 36 |  | nnexpcl |  |-  ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) | 
						
							| 37 | 30 35 36 | sylancr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. NN ) | 
						
							| 38 | 37 | nnzd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. ZZ ) | 
						
							| 39 |  | peano2zm |  |-  ( ( 2 ^ k ) e. ZZ -> ( ( 2 ^ k ) - 1 ) e. ZZ ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. ZZ ) | 
						
							| 41 | 40 | zred |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. CC ) | 
						
							| 43 |  | 0red |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 0 e. RR ) | 
						
							| 44 |  | 1red |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 e. RR ) | 
						
							| 45 |  | 0lt1 |  |-  0 < 1 | 
						
							| 46 | 45 | a1i |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 0 < 1 ) | 
						
							| 47 |  | eluz2gt1 |  |-  ( k e. ( ZZ>= ` 2 ) -> 1 < k ) | 
						
							| 48 | 32 47 | syl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < k ) | 
						
							| 49 | 11 | a1i |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 2 e. RR ) | 
						
							| 50 |  | 1zzd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 e. ZZ ) | 
						
							| 51 |  | elfzelz |  |-  ( k e. ( 2 ... ( P - 1 ) ) -> k e. ZZ ) | 
						
							| 52 | 51 | ad2antlr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. ZZ ) | 
						
							| 53 | 20 | a1i |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < 2 ) | 
						
							| 54 | 49 50 52 53 | ltexp2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 < k <-> ( 2 ^ 1 ) < ( 2 ^ k ) ) ) | 
						
							| 55 | 48 54 | mpbid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ 1 ) < ( 2 ^ k ) ) | 
						
							| 56 | 5 55 | eqbrtrrid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 + 1 ) < ( 2 ^ k ) ) | 
						
							| 57 | 37 | nnred |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. RR ) | 
						
							| 58 | 44 44 57 | ltaddsubd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 1 + 1 ) < ( 2 ^ k ) <-> 1 < ( ( 2 ^ k ) - 1 ) ) ) | 
						
							| 59 | 56 58 | mpbid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < ( ( 2 ^ k ) - 1 ) ) | 
						
							| 60 | 43 44 41 46 59 | lttrd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 0 < ( ( 2 ^ k ) - 1 ) ) | 
						
							| 61 |  | elnnz |  |-  ( ( ( 2 ^ k ) - 1 ) e. NN <-> ( ( ( 2 ^ k ) - 1 ) e. ZZ /\ 0 < ( ( 2 ^ k ) - 1 ) ) ) | 
						
							| 62 | 40 60 61 | sylanbrc |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. NN ) | 
						
							| 63 | 62 | nnne0d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) =/= 0 ) | 
						
							| 64 | 29 42 63 | divcan2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) = ( ( 2 ^ P ) - 1 ) ) | 
						
							| 65 | 64 26 | eqeltrd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) e. Prime ) | 
						
							| 66 |  | eluz2b2 |  |-  ( ( ( 2 ^ k ) - 1 ) e. ( ZZ>= ` 2 ) <-> ( ( ( 2 ^ k ) - 1 ) e. NN /\ 1 < ( ( 2 ^ k ) - 1 ) ) ) | 
						
							| 67 | 62 59 66 | sylanbrc |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 68 | 37 | nncnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. CC ) | 
						
							| 69 |  | ax-1cn |  |-  1 e. CC | 
						
							| 70 |  | subeq0 |  |-  ( ( ( 2 ^ k ) e. CC /\ 1 e. CC ) -> ( ( ( 2 ^ k ) - 1 ) = 0 <-> ( 2 ^ k ) = 1 ) ) | 
						
							| 71 | 68 69 70 | sylancl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) = 0 <-> ( 2 ^ k ) = 1 ) ) | 
						
							| 72 | 71 | necon3bid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) =/= 0 <-> ( 2 ^ k ) =/= 1 ) ) | 
						
							| 73 | 63 72 | mpbid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) =/= 1 ) | 
						
							| 74 |  | simpr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k || P ) | 
						
							| 75 |  | eluz2nn |  |-  ( P e. ( ZZ>= ` 2 ) -> P e. NN ) | 
						
							| 76 | 25 75 | syl |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. NN ) | 
						
							| 77 | 76 | ad2antrr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> P e. NN ) | 
						
							| 78 |  | nndivdvds |  |-  ( ( P e. NN /\ k e. NN ) -> ( k || P <-> ( P / k ) e. NN ) ) | 
						
							| 79 | 77 34 78 | syl2anc |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( k || P <-> ( P / k ) e. NN ) ) | 
						
							| 80 | 74 79 | mpbid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( P / k ) e. NN ) | 
						
							| 81 | 80 | nnnn0d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( P / k ) e. NN0 ) | 
						
							| 82 | 68 73 81 | geoser |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> sum_ n e. ( 0 ... ( ( P / k ) - 1 ) ) ( ( 2 ^ k ) ^ n ) = ( ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) / ( 1 - ( 2 ^ k ) ) ) ) | 
						
							| 83 | 15 | ad2antrr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ P ) e. RR ) | 
						
							| 84 | 83 | recnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ P ) e. CC ) | 
						
							| 85 |  | negsubdi2 |  |-  ( ( ( 2 ^ P ) e. CC /\ 1 e. CC ) -> -u ( ( 2 ^ P ) - 1 ) = ( 1 - ( 2 ^ P ) ) ) | 
						
							| 86 | 84 69 85 | sylancl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -u ( ( 2 ^ P ) - 1 ) = ( 1 - ( 2 ^ P ) ) ) | 
						
							| 87 | 77 | nncnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> P e. CC ) | 
						
							| 88 | 34 | nncnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. CC ) | 
						
							| 89 | 34 | nnne0d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k =/= 0 ) | 
						
							| 90 | 87 88 89 | divcan2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( k x. ( P / k ) ) = P ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ ( k x. ( P / k ) ) ) = ( 2 ^ P ) ) | 
						
							| 92 | 49 | recnd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 2 e. CC ) | 
						
							| 93 | 92 81 35 | expmuld |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ ( k x. ( P / k ) ) ) = ( ( 2 ^ k ) ^ ( P / k ) ) ) | 
						
							| 94 | 91 93 | eqtr3d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ P ) = ( ( 2 ^ k ) ^ ( P / k ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 - ( 2 ^ P ) ) = ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) ) | 
						
							| 96 | 86 95 | eqtrd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -u ( ( 2 ^ P ) - 1 ) = ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) ) | 
						
							| 97 |  | negsubdi2 |  |-  ( ( ( 2 ^ k ) e. CC /\ 1 e. CC ) -> -u ( ( 2 ^ k ) - 1 ) = ( 1 - ( 2 ^ k ) ) ) | 
						
							| 98 | 68 69 97 | sylancl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -u ( ( 2 ^ k ) - 1 ) = ( 1 - ( 2 ^ k ) ) ) | 
						
							| 99 | 96 98 | oveq12d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( -u ( ( 2 ^ P ) - 1 ) / -u ( ( 2 ^ k ) - 1 ) ) = ( ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) / ( 1 - ( 2 ^ k ) ) ) ) | 
						
							| 100 | 29 42 63 | div2negd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( -u ( ( 2 ^ P ) - 1 ) / -u ( ( 2 ^ k ) - 1 ) ) = ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) | 
						
							| 101 | 82 99 100 | 3eqtr2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> sum_ n e. ( 0 ... ( ( P / k ) - 1 ) ) ( ( 2 ^ k ) ^ n ) = ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) | 
						
							| 102 |  | fzfid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 0 ... ( ( P / k ) - 1 ) ) e. Fin ) | 
						
							| 103 |  | elfznn0 |  |-  ( n e. ( 0 ... ( ( P / k ) - 1 ) ) -> n e. NN0 ) | 
						
							| 104 |  | zexpcl |  |-  ( ( ( 2 ^ k ) e. ZZ /\ n e. NN0 ) -> ( ( 2 ^ k ) ^ n ) e. ZZ ) | 
						
							| 105 | 38 103 104 | syl2an |  |-  ( ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) /\ n e. ( 0 ... ( ( P / k ) - 1 ) ) ) -> ( ( 2 ^ k ) ^ n ) e. ZZ ) | 
						
							| 106 | 102 105 | fsumzcl |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> sum_ n e. ( 0 ... ( ( P / k ) - 1 ) ) ( ( 2 ^ k ) ^ n ) e. ZZ ) | 
						
							| 107 | 101 106 | eqeltrrd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ZZ ) | 
						
							| 108 | 42 | mullidd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 x. ( ( 2 ^ k ) - 1 ) ) = ( ( 2 ^ k ) - 1 ) ) | 
						
							| 109 |  | 2z |  |-  2 e. ZZ | 
						
							| 110 |  | elfzm11 |  |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( k e. ( 2 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 2 <_ k /\ k < P ) ) ) | 
						
							| 111 | 109 1 110 | sylancr |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( k e. ( 2 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 2 <_ k /\ k < P ) ) ) | 
						
							| 112 | 111 | biimpa |  |-  ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) -> ( k e. ZZ /\ 2 <_ k /\ k < P ) ) | 
						
							| 113 | 112 | simp3d |  |-  ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) -> k < P ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k < P ) | 
						
							| 115 | 1 | ad2antrr |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> P e. ZZ ) | 
						
							| 116 | 49 52 115 53 | ltexp2d |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( k < P <-> ( 2 ^ k ) < ( 2 ^ P ) ) ) | 
						
							| 117 | 114 116 | mpbid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) < ( 2 ^ P ) ) | 
						
							| 118 | 57 83 44 117 | ltsub1dd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) < ( ( 2 ^ P ) - 1 ) ) | 
						
							| 119 | 108 118 | eqbrtrd |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 x. ( ( 2 ^ k ) - 1 ) ) < ( ( 2 ^ P ) - 1 ) ) | 
						
							| 120 | 28 | nnred |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. RR ) | 
						
							| 121 |  | ltmuldiv |  |-  ( ( 1 e. RR /\ ( ( 2 ^ P ) - 1 ) e. RR /\ ( ( ( 2 ^ k ) - 1 ) e. RR /\ 0 < ( ( 2 ^ k ) - 1 ) ) ) -> ( ( 1 x. ( ( 2 ^ k ) - 1 ) ) < ( ( 2 ^ P ) - 1 ) <-> 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) ) | 
						
							| 122 | 44 120 41 60 121 | syl112anc |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 1 x. ( ( 2 ^ k ) - 1 ) ) < ( ( 2 ^ P ) - 1 ) <-> 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) ) | 
						
							| 123 | 119 122 | mpbid |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) | 
						
							| 124 |  | eluz2b1 |  |-  ( ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ( ZZ>= ` 2 ) <-> ( ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ZZ /\ 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) ) | 
						
							| 125 | 107 123 124 | sylanbrc |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ( ZZ>= ` 2 ) ) | 
						
							| 126 |  | nprm |  |-  ( ( ( ( 2 ^ k ) - 1 ) e. ( ZZ>= ` 2 ) /\ ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ( ZZ>= ` 2 ) ) -> -. ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) e. Prime ) | 
						
							| 127 | 67 125 126 | syl2anc |  |-  ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -. ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) e. Prime ) | 
						
							| 128 | 65 127 | pm2.65da |  |-  ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) -> -. k || P ) | 
						
							| 129 | 128 | ralrimiva |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> A. k e. ( 2 ... ( P - 1 ) ) -. k || P ) | 
						
							| 130 |  | isprm3 |  |-  ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. k e. ( 2 ... ( P - 1 ) ) -. k || P ) ) | 
						
							| 131 | 25 129 130 | sylanbrc |  |-  ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. Prime ) |