| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprm2 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 2 |
|
iman |
|- ( ( z e. NN -> ( z = 1 \/ z = P ) ) <-> -. ( z e. NN /\ -. ( z = 1 \/ z = P ) ) ) |
| 3 |
|
eluz2nn |
|- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
| 4 |
|
nnz |
|- ( z e. NN -> z e. ZZ ) |
| 5 |
|
dvdsle |
|- ( ( z e. ZZ /\ P e. NN ) -> ( z || P -> z <_ P ) ) |
| 6 |
4 5
|
sylan |
|- ( ( z e. NN /\ P e. NN ) -> ( z || P -> z <_ P ) ) |
| 7 |
|
nnge1 |
|- ( z e. NN -> 1 <_ z ) |
| 8 |
7
|
adantr |
|- ( ( z e. NN /\ P e. NN ) -> 1 <_ z ) |
| 9 |
6 8
|
jctild |
|- ( ( z e. NN /\ P e. NN ) -> ( z || P -> ( 1 <_ z /\ z <_ P ) ) ) |
| 10 |
3 9
|
sylan2 |
|- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( z || P -> ( 1 <_ z /\ z <_ P ) ) ) |
| 11 |
|
zre |
|- ( z e. ZZ -> z e. RR ) |
| 12 |
|
nnre |
|- ( P e. NN -> P e. RR ) |
| 13 |
|
1re |
|- 1 e. RR |
| 14 |
|
leltne |
|- ( ( 1 e. RR /\ z e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) |
| 15 |
13 14
|
mp3an1 |
|- ( ( z e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) |
| 16 |
15
|
3adant2 |
|- ( ( z e. RR /\ P e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) |
| 17 |
16
|
3expia |
|- ( ( z e. RR /\ P e. RR ) -> ( 1 <_ z -> ( 1 < z <-> z =/= 1 ) ) ) |
| 18 |
|
leltne |
|- ( ( z e. RR /\ P e. RR /\ z <_ P ) -> ( z < P <-> P =/= z ) ) |
| 19 |
18
|
3expia |
|- ( ( z e. RR /\ P e. RR ) -> ( z <_ P -> ( z < P <-> P =/= z ) ) ) |
| 20 |
17 19
|
anim12d |
|- ( ( z e. RR /\ P e. RR ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) ) ) |
| 21 |
11 12 20
|
syl2an |
|- ( ( z e. ZZ /\ P e. NN ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) ) ) |
| 22 |
|
pm4.38 |
|- ( ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) -> ( ( 1 < z /\ z < P ) <-> ( z =/= 1 /\ P =/= z ) ) ) |
| 23 |
|
df-ne |
|- ( z =/= 1 <-> -. z = 1 ) |
| 24 |
|
nesym |
|- ( P =/= z <-> -. z = P ) |
| 25 |
23 24
|
anbi12i |
|- ( ( z =/= 1 /\ P =/= z ) <-> ( -. z = 1 /\ -. z = P ) ) |
| 26 |
|
ioran |
|- ( -. ( z = 1 \/ z = P ) <-> ( -. z = 1 /\ -. z = P ) ) |
| 27 |
25 26
|
bitr4i |
|- ( ( z =/= 1 /\ P =/= z ) <-> -. ( z = 1 \/ z = P ) ) |
| 28 |
22 27
|
bitrdi |
|- ( ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) |
| 29 |
21 28
|
syl6 |
|- ( ( z e. ZZ /\ P e. NN ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) |
| 30 |
4 3 29
|
syl2an |
|- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) |
| 31 |
10 30
|
syld |
|- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( z || P -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) |
| 32 |
31
|
imp |
|- ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) |
| 33 |
|
eluzelz |
|- ( P e. ( ZZ>= ` 2 ) -> P e. ZZ ) |
| 34 |
|
1z |
|- 1 e. ZZ |
| 35 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ z e. ZZ ) -> ( 1 < z <-> ( 1 + 1 ) <_ z ) ) |
| 36 |
34 35
|
mpan |
|- ( z e. ZZ -> ( 1 < z <-> ( 1 + 1 ) <_ z ) ) |
| 37 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 38 |
37
|
breq1i |
|- ( 2 <_ z <-> ( 1 + 1 ) <_ z ) |
| 39 |
36 38
|
bitr4di |
|- ( z e. ZZ -> ( 1 < z <-> 2 <_ z ) ) |
| 40 |
39
|
adantr |
|- ( ( z e. ZZ /\ P e. ZZ ) -> ( 1 < z <-> 2 <_ z ) ) |
| 41 |
|
zltlem1 |
|- ( ( z e. ZZ /\ P e. ZZ ) -> ( z < P <-> z <_ ( P - 1 ) ) ) |
| 42 |
40 41
|
anbi12d |
|- ( ( z e. ZZ /\ P e. ZZ ) -> ( ( 1 < z /\ z < P ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 43 |
|
peano2zm |
|- ( P e. ZZ -> ( P - 1 ) e. ZZ ) |
| 44 |
|
2z |
|- 2 e. ZZ |
| 45 |
|
elfz |
|- ( ( z e. ZZ /\ 2 e. ZZ /\ ( P - 1 ) e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 46 |
44 45
|
mp3an2 |
|- ( ( z e. ZZ /\ ( P - 1 ) e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 47 |
43 46
|
sylan2 |
|- ( ( z e. ZZ /\ P e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) |
| 48 |
42 47
|
bitr4d |
|- ( ( z e. ZZ /\ P e. ZZ ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 49 |
4 33 48
|
syl2an |
|- ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 51 |
32 50
|
bitr3d |
|- ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 52 |
51
|
anasss |
|- ( ( z e. NN /\ ( P e. ( ZZ>= ` 2 ) /\ z || P ) ) -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 53 |
52
|
expcom |
|- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( z e. NN -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) ) |
| 54 |
53
|
pm5.32d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> ( z e. NN /\ z e. ( 2 ... ( P - 1 ) ) ) ) ) |
| 55 |
|
fzssuz |
|- ( 2 ... ( P - 1 ) ) C_ ( ZZ>= ` 2 ) |
| 56 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 57 |
|
uzss |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) ) |
| 58 |
56 57
|
ax-mp |
|- ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) |
| 59 |
55 58
|
sstri |
|- ( 2 ... ( P - 1 ) ) C_ ( ZZ>= ` 1 ) |
| 60 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 61 |
59 60
|
sseqtrri |
|- ( 2 ... ( P - 1 ) ) C_ NN |
| 62 |
61
|
sseli |
|- ( z e. ( 2 ... ( P - 1 ) ) -> z e. NN ) |
| 63 |
62
|
pm4.71ri |
|- ( z e. ( 2 ... ( P - 1 ) ) <-> ( z e. NN /\ z e. ( 2 ... ( P - 1 ) ) ) ) |
| 64 |
54 63
|
bitr4di |
|- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) |
| 65 |
64
|
notbid |
|- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( -. ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> -. z e. ( 2 ... ( P - 1 ) ) ) ) |
| 66 |
2 65
|
bitrid |
|- ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN -> ( z = 1 \/ z = P ) ) <-> -. z e. ( 2 ... ( P - 1 ) ) ) ) |
| 67 |
66
|
pm5.74da |
|- ( P e. ( ZZ>= ` 2 ) -> ( ( z || P -> ( z e. NN -> ( z = 1 \/ z = P ) ) ) <-> ( z || P -> -. z e. ( 2 ... ( P - 1 ) ) ) ) ) |
| 68 |
|
bi2.04 |
|- ( ( z || P -> ( z e. NN -> ( z = 1 \/ z = P ) ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 69 |
|
con2b |
|- ( ( z || P -> -. z e. ( 2 ... ( P - 1 ) ) ) <-> ( z e. ( 2 ... ( P - 1 ) ) -> -. z || P ) ) |
| 70 |
67 68 69
|
3bitr3g |
|- ( P e. ( ZZ>= ` 2 ) -> ( ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) <-> ( z e. ( 2 ... ( P - 1 ) ) -> -. z || P ) ) ) |
| 71 |
70
|
ralbidv2 |
|- ( P e. ( ZZ>= ` 2 ) -> ( A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) <-> A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |
| 72 |
71
|
pm5.32i |
|- ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |
| 73 |
1 72
|
bitri |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |