Metamath Proof Explorer


Theorem isprm3

Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion isprm3 PP2z2P1¬zP

Proof

Step Hyp Ref Expression
1 isprm2 PP2zzPz=1z=P
2 iman zz=1z=P¬z¬z=1z=P
3 eluz2nn P2P
4 nnz zz
5 dvdsle zPzPzP
6 4 5 sylan zPzPzP
7 nnge1 z1z
8 7 adantr zP1z
9 6 8 jctild zPzP1zzP
10 3 9 sylan2 zP2zP1zzP
11 zre zz
12 nnre PP
13 1re 1
14 leltne 1z1z1<zz1
15 13 14 mp3an1 z1z1<zz1
16 15 3adant2 zP1z1<zz1
17 16 3expia zP1z1<zz1
18 leltne zPzPz<PPz
19 18 3expia zPzPz<PPz
20 17 19 anim12d zP1zzP1<zz1z<PPz
21 11 12 20 syl2an zP1zzP1<zz1z<PPz
22 pm4.38 1<zz1z<PPz1<zz<Pz1Pz
23 df-ne z1¬z=1
24 nesym Pz¬z=P
25 23 24 anbi12i z1Pz¬z=1¬z=P
26 ioran ¬z=1z=P¬z=1¬z=P
27 25 26 bitr4i z1Pz¬z=1z=P
28 22 27 bitrdi 1<zz1z<PPz1<zz<P¬z=1z=P
29 21 28 syl6 zP1zzP1<zz<P¬z=1z=P
30 4 3 29 syl2an zP21zzP1<zz<P¬z=1z=P
31 10 30 syld zP2zP1<zz<P¬z=1z=P
32 31 imp zP2zP1<zz<P¬z=1z=P
33 eluzelz P2P
34 1z 1
35 zltp1le 1z1<z1+1z
36 34 35 mpan z1<z1+1z
37 df-2 2=1+1
38 37 breq1i 2z1+1z
39 36 38 bitr4di z1<z2z
40 39 adantr zP1<z2z
41 zltlem1 zPz<PzP1
42 40 41 anbi12d zP1<zz<P2zzP1
43 peano2zm PP1
44 2z 2
45 elfz z2P1z2P12zzP1
46 44 45 mp3an2 zP1z2P12zzP1
47 43 46 sylan2 zPz2P12zzP1
48 42 47 bitr4d zP1<zz<Pz2P1
49 4 33 48 syl2an zP21<zz<Pz2P1
50 49 adantr zP2zP1<zz<Pz2P1
51 32 50 bitr3d zP2zP¬z=1z=Pz2P1
52 51 anasss zP2zP¬z=1z=Pz2P1
53 52 expcom P2zPz¬z=1z=Pz2P1
54 53 pm5.32d P2zPz¬z=1z=Pzz2P1
55 fzssuz 2P12
56 2eluzge1 21
57 uzss 2121
58 56 57 ax-mp 21
59 55 58 sstri 2P11
60 nnuz =1
61 59 60 sseqtrri 2P1
62 61 sseli z2P1z
63 62 pm4.71ri z2P1zz2P1
64 54 63 bitr4di P2zPz¬z=1z=Pz2P1
65 64 notbid P2zP¬z¬z=1z=P¬z2P1
66 2 65 bitrid P2zPzz=1z=P¬z2P1
67 66 pm5.74da P2zPzz=1z=PzP¬z2P1
68 bi2.04 zPzz=1z=PzzPz=1z=P
69 con2b zP¬z2P1z2P1¬zP
70 67 68 69 3bitr3g P2zzPz=1z=Pz2P1¬zP
71 70 ralbidv2 P2zzPz=1z=Pz2P1¬zP
72 71 pm5.32i P2zzPz=1z=PP2z2P1¬zP
73 1 72 bitri PP2z2P1¬zP