Step |
Hyp |
Ref |
Expression |
1 |
|
mersenne |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. Prime ) |
2 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
3 |
1 2
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. NN ) |
4 |
|
1sgm2ppw |
|- ( P e. NN -> ( 1 sigma ( 2 ^ ( P - 1 ) ) ) = ( ( 2 ^ P ) - 1 ) ) |
5 |
3 4
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 sigma ( 2 ^ ( P - 1 ) ) ) = ( ( 2 ^ P ) - 1 ) ) |
6 |
|
1sgmprm |
|- ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( 1 sigma ( ( 2 ^ P ) - 1 ) ) = ( ( ( 2 ^ P ) - 1 ) + 1 ) ) |
7 |
6
|
adantl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ P ) - 1 ) ) = ( ( ( 2 ^ P ) - 1 ) + 1 ) ) |
8 |
|
2nn |
|- 2 e. NN |
9 |
3
|
nnnn0d |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. NN0 ) |
10 |
|
nnexpcl |
|- ( ( 2 e. NN /\ P e. NN0 ) -> ( 2 ^ P ) e. NN ) |
11 |
8 9 10
|
sylancr |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ P ) e. NN ) |
12 |
11
|
nncnd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ P ) e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
npcan |
|- ( ( ( 2 ^ P ) e. CC /\ 1 e. CC ) -> ( ( ( 2 ^ P ) - 1 ) + 1 ) = ( 2 ^ P ) ) |
15 |
12 13 14
|
sylancl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( ( 2 ^ P ) - 1 ) + 1 ) = ( 2 ^ P ) ) |
16 |
7 15
|
eqtrd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ P ) - 1 ) ) = ( 2 ^ P ) ) |
17 |
5 16
|
oveq12d |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 1 sigma ( 2 ^ ( P - 1 ) ) ) x. ( 1 sigma ( ( 2 ^ P ) - 1 ) ) ) = ( ( ( 2 ^ P ) - 1 ) x. ( 2 ^ P ) ) ) |
18 |
13
|
a1i |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 e. CC ) |
19 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
20 |
3 19
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( P - 1 ) e. NN0 ) |
21 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( P - 1 ) e. NN0 ) -> ( 2 ^ ( P - 1 ) ) e. NN ) |
22 |
8 20 21
|
sylancr |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ ( P - 1 ) ) e. NN ) |
23 |
|
prmnn |
|- ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. NN ) |
24 |
23
|
adantl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. NN ) |
25 |
22
|
nnzd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ ( P - 1 ) ) e. ZZ ) |
26 |
|
prmz |
|- ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. ZZ ) |
27 |
26
|
adantl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. ZZ ) |
28 |
25 27
|
gcdcomd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ ( P - 1 ) ) gcd ( ( 2 ^ P ) - 1 ) ) = ( ( ( 2 ^ P ) - 1 ) gcd ( 2 ^ ( P - 1 ) ) ) ) |
29 |
|
iddvds |
|- ( ( ( 2 ^ P ) - 1 ) e. ZZ -> ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ P ) - 1 ) ) |
30 |
27 29
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ P ) - 1 ) ) |
31 |
|
prmuz2 |
|- ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) ) |
32 |
31
|
adantl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) ) |
33 |
|
eluz2gt1 |
|- ( ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) -> 1 < ( ( 2 ^ P ) - 1 ) ) |
34 |
32 33
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < ( ( 2 ^ P ) - 1 ) ) |
35 |
|
ndvdsp1 |
|- ( ( ( ( 2 ^ P ) - 1 ) e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. NN /\ 1 < ( ( 2 ^ P ) - 1 ) ) -> ( ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ P ) - 1 ) -> -. ( ( 2 ^ P ) - 1 ) || ( ( ( 2 ^ P ) - 1 ) + 1 ) ) ) |
36 |
27 24 34 35
|
syl3anc |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ P ) - 1 ) -> -. ( ( 2 ^ P ) - 1 ) || ( ( ( 2 ^ P ) - 1 ) + 1 ) ) ) |
37 |
30 36
|
mpd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> -. ( ( 2 ^ P ) - 1 ) || ( ( ( 2 ^ P ) - 1 ) + 1 ) ) |
38 |
|
2z |
|- 2 e. ZZ |
39 |
38
|
a1i |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 2 e. ZZ ) |
40 |
|
dvdsmultr1 |
|- ( ( ( ( 2 ^ P ) - 1 ) e. ZZ /\ ( 2 ^ ( P - 1 ) ) e. ZZ /\ 2 e. ZZ ) -> ( ( ( 2 ^ P ) - 1 ) || ( 2 ^ ( P - 1 ) ) -> ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ ( P - 1 ) ) x. 2 ) ) ) |
41 |
27 25 39 40
|
syl3anc |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( ( 2 ^ P ) - 1 ) || ( 2 ^ ( P - 1 ) ) -> ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ ( P - 1 ) ) x. 2 ) ) ) |
42 |
|
2cn |
|- 2 e. CC |
43 |
|
expm1t |
|- ( ( 2 e. CC /\ P e. NN ) -> ( 2 ^ P ) = ( ( 2 ^ ( P - 1 ) ) x. 2 ) ) |
44 |
42 3 43
|
sylancr |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ P ) = ( ( 2 ^ ( P - 1 ) ) x. 2 ) ) |
45 |
15 44
|
eqtr2d |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ ( P - 1 ) ) x. 2 ) = ( ( ( 2 ^ P ) - 1 ) + 1 ) ) |
46 |
45
|
breq2d |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( ( 2 ^ P ) - 1 ) || ( ( 2 ^ ( P - 1 ) ) x. 2 ) <-> ( ( 2 ^ P ) - 1 ) || ( ( ( 2 ^ P ) - 1 ) + 1 ) ) ) |
47 |
41 46
|
sylibd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( ( 2 ^ P ) - 1 ) || ( 2 ^ ( P - 1 ) ) -> ( ( 2 ^ P ) - 1 ) || ( ( ( 2 ^ P ) - 1 ) + 1 ) ) ) |
48 |
37 47
|
mtod |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> -. ( ( 2 ^ P ) - 1 ) || ( 2 ^ ( P - 1 ) ) ) |
49 |
|
simpr |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. Prime ) |
50 |
|
coprm |
|- ( ( ( ( 2 ^ P ) - 1 ) e. Prime /\ ( 2 ^ ( P - 1 ) ) e. ZZ ) -> ( -. ( ( 2 ^ P ) - 1 ) || ( 2 ^ ( P - 1 ) ) <-> ( ( ( 2 ^ P ) - 1 ) gcd ( 2 ^ ( P - 1 ) ) ) = 1 ) ) |
51 |
49 25 50
|
syl2anc |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( -. ( ( 2 ^ P ) - 1 ) || ( 2 ^ ( P - 1 ) ) <-> ( ( ( 2 ^ P ) - 1 ) gcd ( 2 ^ ( P - 1 ) ) ) = 1 ) ) |
52 |
48 51
|
mpbid |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( ( 2 ^ P ) - 1 ) gcd ( 2 ^ ( P - 1 ) ) ) = 1 ) |
53 |
28 52
|
eqtrd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ ( P - 1 ) ) gcd ( ( 2 ^ P ) - 1 ) ) = 1 ) |
54 |
|
sgmmul |
|- ( ( 1 e. CC /\ ( ( 2 ^ ( P - 1 ) ) e. NN /\ ( ( 2 ^ P ) - 1 ) e. NN /\ ( ( 2 ^ ( P - 1 ) ) gcd ( ( 2 ^ P ) - 1 ) ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ ( P - 1 ) ) x. ( ( 2 ^ P ) - 1 ) ) ) = ( ( 1 sigma ( 2 ^ ( P - 1 ) ) ) x. ( 1 sigma ( ( 2 ^ P ) - 1 ) ) ) ) |
55 |
18 22 24 53 54
|
syl13anc |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ ( P - 1 ) ) x. ( ( 2 ^ P ) - 1 ) ) ) = ( ( 1 sigma ( 2 ^ ( P - 1 ) ) ) x. ( 1 sigma ( ( 2 ^ P ) - 1 ) ) ) ) |
56 |
|
subcl |
|- ( ( ( 2 ^ P ) e. CC /\ 1 e. CC ) -> ( ( 2 ^ P ) - 1 ) e. CC ) |
57 |
12 13 56
|
sylancl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. CC ) |
58 |
12 57
|
mulcomd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) x. ( ( 2 ^ P ) - 1 ) ) = ( ( ( 2 ^ P ) - 1 ) x. ( 2 ^ P ) ) ) |
59 |
17 55 58
|
3eqtr4d |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ ( P - 1 ) ) x. ( ( 2 ^ P ) - 1 ) ) ) = ( ( 2 ^ P ) x. ( ( 2 ^ P ) - 1 ) ) ) |