Metamath Proof Explorer


Theorem perfect1

Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2 ^ ( p - 1 ) x. ( 2 ^ p - 1 ) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion perfect1 P2P11σ2P12P1=2P2P1

Proof

Step Hyp Ref Expression
1 mersenne P2P1P
2 prmnn PP
3 1 2 syl P2P1P
4 1sgm2ppw P1σ2P1=2P1
5 3 4 syl P2P11σ2P1=2P1
6 1sgmprm 2P11σ2P1=2P-1+1
7 6 adantl P2P11σ2P1=2P-1+1
8 2nn 2
9 3 nnnn0d P2P1P0
10 nnexpcl 2P02P
11 8 9 10 sylancr P2P12P
12 11 nncnd P2P12P
13 ax-1cn 1
14 npcan 2P12P-1+1=2P
15 12 13 14 sylancl P2P12P-1+1=2P
16 7 15 eqtrd P2P11σ2P1=2P
17 5 16 oveq12d P2P11σ2P11σ2P1=2P12P
18 13 a1i P2P11
19 nnm1nn0 PP10
20 3 19 syl P2P1P10
21 nnexpcl 2P102P1
22 8 20 21 sylancr P2P12P1
23 prmnn 2P12P1
24 23 adantl P2P12P1
25 22 nnzd P2P12P1
26 prmz 2P12P1
27 26 adantl P2P12P1
28 25 27 gcdcomd P2P12P1gcd2P1=2P1gcd2P1
29 iddvds 2P12P12P1
30 27 29 syl P2P12P12P1
31 prmuz2 2P12P12
32 31 adantl P2P12P12
33 eluz2gt1 2P121<2P1
34 32 33 syl P2P11<2P1
35 ndvdsp1 2P12P11<2P12P12P1¬2P12P-1+1
36 27 24 34 35 syl3anc P2P12P12P1¬2P12P-1+1
37 30 36 mpd P2P1¬2P12P-1+1
38 2z 2
39 38 a1i P2P12
40 dvdsmultr1 2P12P122P12P12P12P12
41 27 25 39 40 syl3anc P2P12P12P12P12P12
42 2cn 2
43 expm1t 2P2P=2P12
44 42 3 43 sylancr P2P12P=2P12
45 15 44 eqtr2d P2P12P12=2P-1+1
46 45 breq2d P2P12P12P122P12P-1+1
47 41 46 sylibd P2P12P12P12P12P-1+1
48 37 47 mtod P2P1¬2P12P1
49 simpr P2P12P1
50 coprm 2P12P1¬2P12P12P1gcd2P1=1
51 49 25 50 syl2anc P2P1¬2P12P12P1gcd2P1=1
52 48 51 mpbid P2P12P1gcd2P1=1
53 28 52 eqtrd P2P12P1gcd2P1=1
54 sgmmul 12P12P12P1gcd2P1=11σ2P12P1=1σ2P11σ2P1
55 18 22 24 53 54 syl13anc P2P11σ2P12P1=1σ2P11σ2P1
56 subcl 2P12P1
57 12 13 56 sylancl P2P12P1
58 12 57 mulcomd P2P12P2P1=2P12P
59 17 55 58 3eqtr4d P2P11σ2P12P1=2P2P1