Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2 ^ ( p - 1 ) x. ( 2 ^ p - 1 ) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | perfect1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mersenne | |
|
2 | prmnn | |
|
3 | 1 2 | syl | |
4 | 1sgm2ppw | |
|
5 | 3 4 | syl | |
6 | 1sgmprm | |
|
7 | 6 | adantl | |
8 | 2nn | |
|
9 | 3 | nnnn0d | |
10 | nnexpcl | |
|
11 | 8 9 10 | sylancr | |
12 | 11 | nncnd | |
13 | ax-1cn | |
|
14 | npcan | |
|
15 | 12 13 14 | sylancl | |
16 | 7 15 | eqtrd | |
17 | 5 16 | oveq12d | |
18 | 13 | a1i | |
19 | nnm1nn0 | |
|
20 | 3 19 | syl | |
21 | nnexpcl | |
|
22 | 8 20 21 | sylancr | |
23 | prmnn | |
|
24 | 23 | adantl | |
25 | 22 | nnzd | |
26 | prmz | |
|
27 | 26 | adantl | |
28 | 25 27 | gcdcomd | |
29 | iddvds | |
|
30 | 27 29 | syl | |
31 | prmuz2 | |
|
32 | 31 | adantl | |
33 | eluz2gt1 | |
|
34 | 32 33 | syl | |
35 | ndvdsp1 | |
|
36 | 27 24 34 35 | syl3anc | |
37 | 30 36 | mpd | |
38 | 2z | |
|
39 | 38 | a1i | |
40 | dvdsmultr1 | |
|
41 | 27 25 39 40 | syl3anc | |
42 | 2cn | |
|
43 | expm1t | |
|
44 | 42 3 43 | sylancr | |
45 | 15 44 | eqtr2d | |
46 | 45 | breq2d | |
47 | 41 46 | sylibd | |
48 | 37 47 | mtod | |
49 | simpr | |
|
50 | coprm | |
|
51 | 49 25 50 | syl2anc | |
52 | 48 51 | mpbid | |
53 | 28 52 | eqtrd | |
54 | sgmmul | |
|
55 | 18 22 24 53 54 | syl13anc | |
56 | subcl | |
|
57 | 12 13 56 | sylancl | |
58 | 12 57 | mulcomd | |
59 | 17 55 58 | 3eqtr4d | |