| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr1 |
|
| 2 |
|
simpr2 |
|
| 3 |
|
simpr3 |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
ssrab2 |
|
| 8 |
|
simpr |
|
| 9 |
7 8
|
sselid |
|
| 10 |
9
|
nncnd |
|
| 11 |
|
simpll |
|
| 12 |
10 11
|
cxpcld |
|
| 13 |
|
ssrab2 |
|
| 14 |
|
simpr |
|
| 15 |
13 14
|
sselid |
|
| 16 |
15
|
nncnd |
|
| 17 |
|
simpll |
|
| 18 |
16 17
|
cxpcld |
|
| 19 |
9
|
adantrr |
|
| 20 |
19
|
nnred |
|
| 21 |
19
|
nnnn0d |
|
| 22 |
21
|
nn0ge0d |
|
| 23 |
15
|
adantrl |
|
| 24 |
23
|
nnred |
|
| 25 |
23
|
nnnn0d |
|
| 26 |
25
|
nn0ge0d |
|
| 27 |
|
simpll |
|
| 28 |
20 22 24 26 27
|
mulcxpd |
|
| 29 |
28
|
eqcomd |
|
| 30 |
|
oveq1 |
|
| 31 |
1 2 3 4 5 6 12 18 29 30
|
fsumdvdsmul |
|
| 32 |
|
sgmval |
|
| 33 |
1 32
|
syldan |
|
| 34 |
|
sgmval |
|
| 35 |
2 34
|
syldan |
|
| 36 |
33 35
|
oveq12d |
|
| 37 |
1 2
|
nnmulcld |
|
| 38 |
|
sgmval |
|
| 39 |
37 38
|
syldan |
|
| 40 |
31 36 39
|
3eqtr4rd |
|