Metamath Proof Explorer


Theorem 1sgm2ppw

Description: The sum of the divisors of 2 ^ ( N - 1 ) . (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion 1sgm2ppw N 1 σ 2 N 1 = 2 N 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 2prm 2
3 nnm1nn0 N N 1 0
4 sgmppw 1 2 N 1 0 1 σ 2 N 1 = k = 0 N 1 2 1 k
5 1 2 3 4 mp3an12i N 1 σ 2 N 1 = k = 0 N 1 2 1 k
6 2cn 2
7 cxp1 2 2 1 = 2
8 6 7 mp1i k 0 N 1 2 1 = 2
9 8 oveq1d k 0 N 1 2 1 k = 2 k
10 9 sumeq2i k = 0 N 1 2 1 k = k = 0 N 1 2 k
11 6 a1i N 2
12 1ne2 1 2
13 12 necomi 2 1
14 13 a1i N 2 1
15 nnnn0 N N 0
16 11 14 15 geoser N k = 0 N 1 2 k = 1 2 N 1 2
17 10 16 eqtrid N k = 0 N 1 2 1 k = 1 2 N 1 2
18 2nn 2
19 nnexpcl 2 N 0 2 N
20 18 15 19 sylancr N 2 N
21 20 nncnd N 2 N
22 subcl 2 N 1 2 N 1
23 21 1 22 sylancl N 2 N 1
24 1 a1i N 1
25 ax-1ne0 1 0
26 25 a1i N 1 0
27 23 24 26 div2negd N 2 N 1 1 = 2 N 1 1
28 negsubdi2 2 N 1 2 N 1 = 1 2 N
29 21 1 28 sylancl N 2 N 1 = 1 2 N
30 df-neg 1 = 0 1
31 0cn 0
32 pnpcan 1 0 1 1 + 0 - 1 + 1 = 0 1
33 1 31 1 32 mp3an 1 + 0 - 1 + 1 = 0 1
34 1p0e1 1 + 0 = 1
35 1p1e2 1 + 1 = 2
36 34 35 oveq12i 1 + 0 - 1 + 1 = 1 2
37 30 33 36 3eqtr2i 1 = 1 2
38 37 a1i N 1 = 1 2
39 29 38 oveq12d N 2 N 1 1 = 1 2 N 1 2
40 23 div1d N 2 N 1 1 = 2 N 1
41 27 39 40 3eqtr3d N 1 2 N 1 2 = 2 N 1
42 5 17 41 3eqtrd N 1 σ 2 N 1 = 2 N 1