| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|
| 2 |
|
1nn0 |
|
| 3 |
|
sgmppw |
|
| 4 |
1 2 3
|
mp3an13 |
|
| 5 |
|
prmnn |
|
| 6 |
5
|
nncnd |
|
| 7 |
6
|
exp1d |
|
| 8 |
7
|
oveq2d |
|
| 9 |
6
|
adantr |
|
| 10 |
9
|
cxp1d |
|
| 11 |
10
|
oveq1d |
|
| 12 |
11
|
sumeq2dv |
|
| 13 |
|
1m1e0 |
|
| 14 |
13
|
oveq2i |
|
| 15 |
14
|
sumeq1i |
|
| 16 |
|
0z |
|
| 17 |
6
|
exp0d |
|
| 18 |
17 1
|
eqeltrdi |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
fsum1 |
|
| 21 |
16 18 20
|
sylancr |
|
| 22 |
21 17
|
eqtrd |
|
| 23 |
15 22
|
eqtrid |
|
| 24 |
23 7
|
oveq12d |
|
| 25 |
2
|
a1i |
|
| 26 |
|
nn0uz |
|
| 27 |
25 26
|
eleqtrdi |
|
| 28 |
|
elfznn0 |
|
| 29 |
|
expcl |
|
| 30 |
6 28 29
|
syl2an |
|
| 31 |
|
oveq2 |
|
| 32 |
27 30 31
|
fsumm1 |
|
| 33 |
|
addcom |
|
| 34 |
6 1 33
|
sylancl |
|
| 35 |
24 32 34
|
3eqtr4d |
|
| 36 |
12 35
|
eqtrd |
|
| 37 |
4 8 36
|
3eqtr3d |
|