| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 3 |
|
sgmppw |
⊢ ( ( 1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0 ) → ( 1 σ ( 𝑃 ↑ 1 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) ) |
| 4 |
1 2 3
|
mp3an13 |
⊢ ( 𝑃 ∈ ℙ → ( 1 σ ( 𝑃 ↑ 1 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) ) |
| 5 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 6 |
5
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 7 |
6
|
exp1d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑃 ∈ ℙ → ( 1 σ ( 𝑃 ↑ 1 ) ) = ( 1 σ 𝑃 ) ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → 𝑃 ∈ ℂ ) |
| 10 |
9
|
cxp1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( 𝑃 ↑𝑐 1 ) = 𝑃 ) |
| 11 |
10
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
| 12 |
11
|
sumeq2dv |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) ) |
| 13 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 14 |
13
|
oveq2i |
⊢ ( 0 ... ( 1 − 1 ) ) = ( 0 ... 0 ) |
| 15 |
14
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) |
| 16 |
|
0z |
⊢ 0 ∈ ℤ |
| 17 |
6
|
exp0d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
| 18 |
17 1
|
eqeltrdi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) ∈ ℂ ) |
| 19 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 20 |
19
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝑃 ↑ 0 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 21 |
16 18 20
|
sylancr |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 22 |
21 17
|
eqtrd |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = 1 ) |
| 23 |
15 22
|
eqtrid |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) = 1 ) |
| 24 |
23 7
|
oveq12d |
⊢ ( 𝑃 ∈ ℙ → ( Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) + ( 𝑃 ↑ 1 ) ) = ( 1 + 𝑃 ) ) |
| 25 |
2
|
a1i |
⊢ ( 𝑃 ∈ ℙ → 1 ∈ ℕ0 ) |
| 26 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 27 |
25 26
|
eleqtrdi |
⊢ ( 𝑃 ∈ ℙ → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 28 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 1 ) → 𝑘 ∈ ℕ0 ) |
| 29 |
|
expcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
| 30 |
6 28 29
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
| 31 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 1 ) ) |
| 32 |
27 30 31
|
fsumm1 |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) + ( 𝑃 ↑ 1 ) ) ) |
| 33 |
|
addcom |
⊢ ( ( 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑃 + 1 ) = ( 1 + 𝑃 ) ) |
| 34 |
6 1 33
|
sylancl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 + 1 ) = ( 1 + 𝑃 ) ) |
| 35 |
24 32 34
|
3eqtr4d |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 + 1 ) ) |
| 36 |
12 35
|
eqtrd |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = ( 𝑃 + 1 ) ) |
| 37 |
4 8 36
|
3eqtr3d |
⊢ ( 𝑃 ∈ ℙ → ( 1 σ 𝑃 ) = ( 𝑃 + 1 ) ) |