| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
1nn0 |
|- 1 e. NN0 |
| 3 |
|
sgmppw |
|- ( ( 1 e. CC /\ P e. Prime /\ 1 e. NN0 ) -> ( 1 sigma ( P ^ 1 ) ) = sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) ) |
| 4 |
1 2 3
|
mp3an13 |
|- ( P e. Prime -> ( 1 sigma ( P ^ 1 ) ) = sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) ) |
| 5 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 6 |
5
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
| 7 |
6
|
exp1d |
|- ( P e. Prime -> ( P ^ 1 ) = P ) |
| 8 |
7
|
oveq2d |
|- ( P e. Prime -> ( 1 sigma ( P ^ 1 ) ) = ( 1 sigma P ) ) |
| 9 |
6
|
adantr |
|- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> P e. CC ) |
| 10 |
9
|
cxp1d |
|- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> ( P ^c 1 ) = P ) |
| 11 |
10
|
oveq1d |
|- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> ( ( P ^c 1 ) ^ k ) = ( P ^ k ) ) |
| 12 |
11
|
sumeq2dv |
|- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) = sum_ k e. ( 0 ... 1 ) ( P ^ k ) ) |
| 13 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 14 |
13
|
oveq2i |
|- ( 0 ... ( 1 - 1 ) ) = ( 0 ... 0 ) |
| 15 |
14
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) = sum_ k e. ( 0 ... 0 ) ( P ^ k ) |
| 16 |
|
0z |
|- 0 e. ZZ |
| 17 |
6
|
exp0d |
|- ( P e. Prime -> ( P ^ 0 ) = 1 ) |
| 18 |
17 1
|
eqeltrdi |
|- ( P e. Prime -> ( P ^ 0 ) e. CC ) |
| 19 |
|
oveq2 |
|- ( k = 0 -> ( P ^ k ) = ( P ^ 0 ) ) |
| 20 |
19
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( P ^ 0 ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( P ^ k ) = ( P ^ 0 ) ) |
| 21 |
16 18 20
|
sylancr |
|- ( P e. Prime -> sum_ k e. ( 0 ... 0 ) ( P ^ k ) = ( P ^ 0 ) ) |
| 22 |
21 17
|
eqtrd |
|- ( P e. Prime -> sum_ k e. ( 0 ... 0 ) ( P ^ k ) = 1 ) |
| 23 |
15 22
|
eqtrid |
|- ( P e. Prime -> sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) = 1 ) |
| 24 |
23 7
|
oveq12d |
|- ( P e. Prime -> ( sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) + ( P ^ 1 ) ) = ( 1 + P ) ) |
| 25 |
2
|
a1i |
|- ( P e. Prime -> 1 e. NN0 ) |
| 26 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 27 |
25 26
|
eleqtrdi |
|- ( P e. Prime -> 1 e. ( ZZ>= ` 0 ) ) |
| 28 |
|
elfznn0 |
|- ( k e. ( 0 ... 1 ) -> k e. NN0 ) |
| 29 |
|
expcl |
|- ( ( P e. CC /\ k e. NN0 ) -> ( P ^ k ) e. CC ) |
| 30 |
6 28 29
|
syl2an |
|- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> ( P ^ k ) e. CC ) |
| 31 |
|
oveq2 |
|- ( k = 1 -> ( P ^ k ) = ( P ^ 1 ) ) |
| 32 |
27 30 31
|
fsumm1 |
|- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( P ^ k ) = ( sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) + ( P ^ 1 ) ) ) |
| 33 |
|
addcom |
|- ( ( P e. CC /\ 1 e. CC ) -> ( P + 1 ) = ( 1 + P ) ) |
| 34 |
6 1 33
|
sylancl |
|- ( P e. Prime -> ( P + 1 ) = ( 1 + P ) ) |
| 35 |
24 32 34
|
3eqtr4d |
|- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( P ^ k ) = ( P + 1 ) ) |
| 36 |
12 35
|
eqtrd |
|- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) = ( P + 1 ) ) |
| 37 |
4 8 36
|
3eqtr3d |
|- ( P e. Prime -> ( 1 sigma P ) = ( P + 1 ) ) |