| Step | Hyp | Ref | Expression | 
						
							| 1 |  | perfectlem.1 |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | perfectlem.2 |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | perfectlem.3 |  |-  ( ph -> -. 2 || B ) | 
						
							| 4 |  | perfectlem.4 |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 5 |  | 2nn |  |-  2 e. NN | 
						
							| 6 | 1 | nnnn0d |  |-  ( ph -> A e. NN0 ) | 
						
							| 7 |  | peano2nn0 |  |-  ( A e. NN0 -> ( A + 1 ) e. NN0 ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( A + 1 ) e. NN0 ) | 
						
							| 9 |  | nnexpcl |  |-  ( ( 2 e. NN /\ ( A + 1 ) e. NN0 ) -> ( 2 ^ ( A + 1 ) ) e. NN ) | 
						
							| 10 | 5 8 9 | sylancr |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. NN ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 | 1 | peano2nnd |  |-  ( ph -> ( A + 1 ) e. NN ) | 
						
							| 13 |  | 1lt2 |  |-  1 < 2 | 
						
							| 14 | 13 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 15 |  | expgt1 |  |-  ( ( 2 e. RR /\ ( A + 1 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 16 | 11 12 14 15 | mp3an2i |  |-  ( ph -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 17 |  | 1nn |  |-  1 e. NN | 
						
							| 18 |  | nnsub |  |-  ( ( 1 e. NN /\ ( 2 ^ ( A + 1 ) ) e. NN ) -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) ) | 
						
							| 19 | 17 10 18 | sylancr |  |-  ( ph -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) ) | 
						
							| 20 | 16 19 | mpbid |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) | 
						
							| 21 | 10 | nnzd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. ZZ ) | 
						
							| 22 |  | peano2zm |  |-  ( ( 2 ^ ( A + 1 ) ) e. ZZ -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) | 
						
							| 24 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 25 |  | sgmnncl |  |-  ( ( 1 e. NN0 /\ B e. NN ) -> ( 1 sigma B ) e. NN ) | 
						
							| 26 | 24 2 25 | sylancr |  |-  ( ph -> ( 1 sigma B ) e. NN ) | 
						
							| 27 | 26 | nnzd |  |-  ( ph -> ( 1 sigma B ) e. ZZ ) | 
						
							| 28 |  | dvdsmul1 |  |-  ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 1 sigma B ) e. ZZ ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 29 | 23 27 28 | syl2anc |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 30 |  | 2cn |  |-  2 e. CC | 
						
							| 31 |  | expp1 |  |-  ( ( 2 e. CC /\ A e. NN0 ) -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 32 | 30 6 31 | sylancr |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 33 |  | nnexpcl |  |-  ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) | 
						
							| 34 | 5 6 33 | sylancr |  |-  ( ph -> ( 2 ^ A ) e. NN ) | 
						
							| 35 | 34 | nncnd |  |-  ( ph -> ( 2 ^ A ) e. CC ) | 
						
							| 36 |  | mulcom |  |-  ( ( ( 2 ^ A ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 37 | 35 30 36 | sylancl |  |-  ( ph -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 38 | 32 37 | eqtrd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( 2 x. ( 2 ^ A ) ) x. B ) ) | 
						
							| 40 | 30 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 41 | 2 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 42 | 40 35 41 | mulassd |  |-  ( ph -> ( ( 2 x. ( 2 ^ A ) ) x. B ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 43 |  | ax-1cn |  |-  1 e. CC | 
						
							| 44 | 43 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 45 |  | 2prm |  |-  2 e. Prime | 
						
							| 46 | 2 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 47 |  | coprm |  |-  ( ( 2 e. Prime /\ B e. ZZ ) -> ( -. 2 || B <-> ( 2 gcd B ) = 1 ) ) | 
						
							| 48 | 45 46 47 | sylancr |  |-  ( ph -> ( -. 2 || B <-> ( 2 gcd B ) = 1 ) ) | 
						
							| 49 | 3 48 | mpbid |  |-  ( ph -> ( 2 gcd B ) = 1 ) | 
						
							| 50 |  | 2z |  |-  2 e. ZZ | 
						
							| 51 |  | rpexp1i |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ A e. NN0 ) -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 52 | 50 46 6 51 | mp3an2i |  |-  ( ph -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 53 | 49 52 | mpd |  |-  ( ph -> ( ( 2 ^ A ) gcd B ) = 1 ) | 
						
							| 54 |  | sgmmul |  |-  ( ( 1 e. CC /\ ( ( 2 ^ A ) e. NN /\ B e. NN /\ ( ( 2 ^ A ) gcd B ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 55 | 44 34 2 53 54 | syl13anc |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 56 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 57 |  | pncan |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 58 | 56 43 57 | sylancl |  |-  ( ph -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ph -> ( 2 ^ ( ( A + 1 ) - 1 ) ) = ( 2 ^ A ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( 1 sigma ( 2 ^ A ) ) ) | 
						
							| 61 |  | 1sgm2ppw |  |-  ( ( A + 1 ) e. NN -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 62 | 12 61 | syl |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 63 | 60 62 | eqtr3d |  |-  ( ph -> ( 1 sigma ( 2 ^ A ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ph -> ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 65 | 55 4 64 | 3eqtr3d |  |-  ( ph -> ( 2 x. ( ( 2 ^ A ) x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 66 | 39 42 65 | 3eqtrd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 67 | 29 66 | breqtrrd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) ) | 
						
							| 68 | 23 21 | gcdcomd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 69 |  | iddvdsexp |  |-  ( ( 2 e. ZZ /\ ( A + 1 ) e. NN ) -> 2 || ( 2 ^ ( A + 1 ) ) ) | 
						
							| 70 | 50 12 69 | sylancr |  |-  ( ph -> 2 || ( 2 ^ ( A + 1 ) ) ) | 
						
							| 71 |  | n2dvds1 |  |-  -. 2 || 1 | 
						
							| 72 | 50 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 73 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 74 | 72 21 73 | 3jca |  |-  ( ph -> ( 2 e. ZZ /\ ( 2 ^ ( A + 1 ) ) e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 75 |  | dvdssub2 |  |-  ( ( ( 2 e. ZZ /\ ( 2 ^ ( A + 1 ) ) e. ZZ /\ 1 e. ZZ ) /\ 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( 2 || ( 2 ^ ( A + 1 ) ) <-> 2 || 1 ) ) | 
						
							| 76 | 74 75 | sylan |  |-  ( ( ph /\ 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( 2 || ( 2 ^ ( A + 1 ) ) <-> 2 || 1 ) ) | 
						
							| 77 | 71 76 | mtbiri |  |-  ( ( ph /\ 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> -. 2 || ( 2 ^ ( A + 1 ) ) ) | 
						
							| 78 | 77 | ex |  |-  ( ph -> ( 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) -> -. 2 || ( 2 ^ ( A + 1 ) ) ) ) | 
						
							| 79 | 70 78 | mt2d |  |-  ( ph -> -. 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 80 |  | coprm |  |-  ( ( 2 e. Prime /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) -> ( -. 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) <-> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 81 | 45 23 80 | sylancr |  |-  ( ph -> ( -. 2 || ( ( 2 ^ ( A + 1 ) ) - 1 ) <-> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 82 | 79 81 | mpbid |  |-  ( ph -> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) | 
						
							| 83 |  | rpexp1i |  |-  ( ( 2 e. ZZ /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( A + 1 ) e. NN0 ) -> ( ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 84 | 50 23 8 83 | mp3an2i |  |-  ( ph -> ( ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 85 | 82 84 | mpd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) | 
						
							| 86 | 68 85 | eqtrd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) | 
						
							| 87 |  | coprmdvds |  |-  ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 2 ^ ( A + 1 ) ) e. ZZ /\ B e. ZZ ) -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) ) | 
						
							| 88 | 23 21 46 87 | syl3anc |  |-  ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) ) | 
						
							| 89 | 67 86 88 | mp2and |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) | 
						
							| 90 |  | nndivdvds |  |-  ( ( B e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) | 
						
							| 91 | 2 20 90 | syl2anc |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) | 
						
							| 92 | 89 91 | mpbid |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) | 
						
							| 93 | 10 20 92 | 3jca |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) |